59 resultados para Chromosome 1p
Resumo:
PURPOSE: To characterize the phenotype and map the locus responsible for autosomal recessive inherited ovine microphthalmia (OMO) in sheep. METHODS: Microphthalmia-affected lambs and their available relatives were collected in a field, and experimental matings were performed to obtain affected and normal lambs for detailed necropsy and histologic examinations. The matings resulted in 18 sheep families with 48 cases of microphthalmia. A comparative candidate gene approach was used to map the disease locus within the sheep genome. Initially, 27 loci responsible for the microphthalmia-anophthalmia phenotypes in humans or mice were selected to test for comparative linkage. Fifty flanking markers that were predicted from comparative genomic analysis to be closely linked to these genes were tested for linkage to the disease locus. After observation of statistical evidence for linkage, a confirmatory fine mapping strategy was applied by further genotyping of 43 microsatellites. RESULTS: The clinical and pathologic examinations showed slightly variable expressivity of isolated bilateral microphthalmia. The anterior eye chamber was small or absent, and a white mass admixed with cystic spaces extended from the papilla to the anterior eye chamber, while no recognizable vitreous body or lens was found within the affected eyes. Significant linkage to a single candidate region was identified at sheep chromosome 23. Fine mapping and haplotype analysis assigned the candidate region to a critical interval of 12.4 cM. This ovine chromosome segment encompasses an ancestral chromosomal breakpoint corresponding to two orthologue segments of human chromosomes 18, short and long arms. For the examined animals, we excluded the complete coding region and adjacent intronic regions of ovine TGIF1 to harbor disease-causing mutations. CONCLUSIONS: This is the first genetic localization for hereditary ovine isolated microphthalmia. It seems unlikely that a mutation in the TGIF1 gene is responsible for this disorder. The studied sheep represent a valuable large animal model for similar human ocular phenotypes.
Resumo:
More than 375,000 BAC-end sequences (BES) of the CHORI-243 ovine BAC library have been deposited in public databases. blastn searches with these BES against HSA18 revealed 1806 unique and significant hits. We used blastn-anchored BES for an in silico prediction of gene content and chromosome assignment of comparatively mapped ovine BAC clones. Ovine BES were selected at approximately 1.3-Mb intervals of HSA18 and incorporated into a human-sheep comparative map. An ovine 5000-rad whole-genome radiation hybrid panel (USUoRH5000) was typed with 70 markers, all of which mapped to OAR23. The resulting OAR23 RH map included 43 markers derived from BES with high and unique BLAST hits to the sequence of the orthologous HSA18, nine EST-derived markers, 16 microsatellite markers taken from the ovine linkage map and two bovine microsatellite markers. Six new microsatellite markers derived from the 43 mapped BES and the two bovine microsatellite markers were linkage-mapped using the International Mapping Flock (IMF). Thirteen additional microsatellite markers were derived from other ovine BES with high and unique BLAST hits to the sequence of the orthologous HSA18 and also positioned on the ovine linkage map but not incorporated into the OAR23 RH map. This resulted in 24 markers in common and in the same order between the RH and linkage maps. Eight of the BES-derived markers were mapped using fluorescent in situ hybridization (FISH), to thereby align the RH and cytogenetic maps. Comparison of the ovine chromosome 23 RH map with the HSA18 map identified and localized three major breakpoints between HSA18 and OAR23. The positions of these breakpoints were equivalent to those previously shown for syntenic BTA24 and HSA18. This study presents evidence for the usefulness of ovine BES when constructing a high-resolution comprehensive map for a single sheep chromosome. The comparative analysis confirms and refines knowledge about chromosomal conservation and rearrangements between sheep, cattle and human. The constructed RH map demonstrates the resolution and utility of the newly constructed ovine RH panel.
Resumo:
Bovine dilated cardiomyopathy (BDCMP) is a severe and terminal disease of the heart muscle observed in Holstein-Friesian cattle over the last 30 years. There is strong evidence for an autosomal recessive mode of inheritance for BDCMP. The objective of this study was to genetically map BDCMP, with the ultimate goal of identifying the causative mutation. A whole-genome scan using 199 microsatellite markers and one SNP revealed an assignment of BDCMP to BTA18. Fine-mapping on BTA18 refined the candidate region to the MSBDCMP06-BMS2785 interval. The interval containing the BDCMP locus was confirmed by multipoint linkage analysis using the software loki. The interval is about 6.7 Mb on the bovine genome sequence (Btau 3.1). The corresponding region of HSA19 is very gene-rich and contains roughly 200 genes. Although telomeric of the marker interval, TNNI3 is a possible positional and a functional candidate for BDCMP given its involvement in a human form of dilated cardiomyopathy. Sequence analysis of TNNI3 in cattle revealed no mutation in the coding sequence, but there was a G-to-A transition in intron 6 (AJ842179:c.378+315G>A). The analysis of this SNP using the study's BDCMP pedigree did not conclusively exclude TNNI3 as a candidate gene for BDCMP. Considering the high density of genes on the homologous region of HSA19, further refinement of the interval on BTA18 containing the BDCMP locus is needed.
Resumo:
REASONS FOR STUDY: Equine recurrent airway obstruction (RAO) is probably dependent on a complex interaction of genetic and environmental factors and shares many characteristic features with human asthma. Interleukin 4 receptor a chain (IL4RA) is a candidate gene because of its role in the development of human asthma, confirmation of this association is therefore required. METHODS: The equine BAC clone containing the IL4RA gene was localised to ECA13q13 by the FISH method. Microsatellite markers in this region were investigated for possible association and linkage with RAO in 2 large Warmblood halfsib families. Based on a history of clinical signs (coughing, nasal discharge, abnormal breathing and poor performance), horses were classified in a horse owner assessed respiratory signs index (HOARSI 1-4: from healthy, mild, moderate to severe signs). Four microsatellite markers (AHT133, LEX041, VHL47, ASB037) were analysed in the offspring of Sire 1 (48 unaffected HOARSI 1 vs. 59 affected HOARSI 2-4) and Sire 2 (35 HOARSI 1 vs. 50 HOARSI 2-4), age 07 years. RESULTS: For both sires haplotypes could be established in the order AHT133-LEXO47-VHL47-ASB37. The distances in this order were estimated to be 2.9, 0.9 and 2.3 centiMorgans, respectively. Haplotype association with mild to severe clinical signs of chronic lower airway disease (HOARSI 2-4) was significant in the offspring of Sire 1 (P = 0.026) but not significant for the offspring of Sire 2 (P = 0.32). Linkage analysis showed the ECA13q13 region containing IL4RA to be linked to equine chronic lower airway disease in one family (P<0.01), but not in the second family. CONCLUSIONS: This supports a genetic background for equine RAO and indicates that IL4RA is a candidate gene with possible locus heterogeneity for this disease. POTENTIAL RELEVANCE: Identification of major genes for RAO may provide a basis for breeding and individual prevention for this important disease.
Resumo:
BACKGROUND: WHO grade II gliomas are often approached by radiation therapy (RT). However, little is known about tumor response and its potential impact on long-term survival. PATIENTS AND METHODS: Patients subjected to RT were selected from the own database of WHO grade II gliomas diagnosed between 1991 and 2000. The volumetric tumor response after RT was assessed based on magnetic resonance imaging and graded according to standard criteria as complete, partial (PR, >or= 50%), or minor (MR, 25% to <50%). RESULTS: There were 24 astrocytomas and three oligoastrocytomas. 21 patients (78%) were dead at follow-up (mean survival 74 months). None of the patients had chemotherapy. Objective response occurred in 14 patients (52%, five PR and nine MR) but was not associated with overall survival. The vast majority of the tumors had no loss of heterozygosity (LOH) 1p and/or 19q (86%). CONCLUSION: Approximately 50% of patients with astrocytic WHO grade II gliomas respond to RT despite the absence of LOH for 1p/19q. The potential predictive factors for response and the impact of response on overall survival remain unclear.
Resumo:
We report on a de novo submicroscopic deletion of 20q13.33 identified by subtelomeric fluorescence in situ hybridization (FISH) in a 4-year-old girl with learning difficulties, hyperlaxity and strabismus, but without obvious dysmorphic features. Further investigations by array-based comparative genomic hybridization (array-CGH) and FISH analysis allowed us to delineate the smallest reported subterminal deletion of chromosome 20q, spanning a 1.1-1.6 Mb with a breakpoint localized between BAC RP5-887L7 and RP11-261N11. The genes CHRNA4 and KCNQ2 implicated in autosomal dominant epilepsy are included in the deletion interval. Subterminal 20q deletions as found in the present patient have, to our knowledge, only been reported in three patients. We review the clinical and behavioral phenotype of such "pure" subterminal 20q deletions.
Resumo:
Drosophila mutants have played an important role in elucidating the physiologic function of genes. Large-scale projects have succeeded in producing mutations in a large proportion of Drosophila genes. Many mutant fly lines have also been produced through the efforts of individual laboratories over the past century. In an effort to make some of these mutants more useful to the research community, we systematically mapped a large number of mutations affecting genes in the proximal half of chromosome arm 2L to more precisely defined regions, defined by deficiency intervals, and, when possible, by individual complementation groups. To further analyze regions 36 and 39-40, we produced 11 new deficiencies with gamma irradiation, and we constructed 6 new deficiencies in region 30-33, using the DrosDel system. trans-heterozygous combinations of deficiencies revealed 5 additional functions, essential for viability or fertility.
Resumo:
BACKGROUND: Duplications and deletions in the human genome can cause disease or predispose persons to disease. Advances in technologies to detect these changes allow for the routine identification of submicroscopic imbalances in large numbers of patients. METHODS: We tested for the presence of microdeletions and microduplications at a specific region of chromosome 1q21.1 in two groups of patients with unexplained mental retardation, autism, or congenital anomalies and in unaffected persons. RESULTS: We identified 25 persons with a recurrent 1.35-Mb deletion within 1q21.1 from screening 5218 patients. The microdeletions had arisen de novo in eight patients, were inherited from a mildly affected parent in three patients, were inherited from an apparently unaffected parent in six patients, and were of unknown inheritance in eight patients. The deletion was absent in a series of 4737 control persons (P=1.1x10(-7)). We found considerable variability in the level of phenotypic expression of the microdeletion; phenotypes included mild-to-moderate mental retardation, microcephaly, cardiac abnormalities, and cataracts. The reciprocal duplication was enriched in nine children with mental retardation or autism spectrum disorder and other variable features (P=0.02). We identified three deletions and three duplications of the 1q21.1 region in an independent sample of 788 patients with mental retardation and congenital anomalies. CONCLUSIONS: We have identified recurrent molecular lesions that elude syndromic classification and whose disease manifestations must be considered in a broader context of development as opposed to being assigned to a specific disease. Clinical diagnosis in patients with these lesions may be most readily achieved on the basis of genotype rather than phenotype.
Resumo:
OBJECTIVE: Chromosomal instability is a key feature in hepatocellular carcinoma (HCC). Array comparative genomic hybridization (aCGH) revealed recurring structural aberrations, whereas fluorescence in situ hybridization (FISH) indicated an increasing number of numerical aberrations in dedifferentiating HCC. Therefore, we examined whether there was a correlation between structural and numerical aberrations of chromosomal instability in HCC. METHODS AND RESULTS: 27 HCC (5 well, 10 moderately, 12 lower differentiated) already cytogenetically characterized by aCGH were analyzed. FISH analysis using probes for chromosomes 1, 3, 7, 8 and 17 revealed 1.46-4.24 signals/nucleus, which correlated with the histological grade (well vs. moderately,p < 0.0003; moderately vs. lower, p < 0.004). The number of chromosomes to each other was stable with exceptions only seen for chromosome 8. Loss of 4q and 13q, respectively, were correlated with the number of aberrations detected by aCGH (p < 0.001, p < 0.005; Mann-Whitney test). Loss of 4q and gain of 8q were correlated with an increasing number of numerical aberrations detected by FISH (p < 0.020, p < 0.031). Loss of 8p was correlated with the number of structural imbalances seen in aCGH (p < 0.048), but not with the number of numerical changes seen in FISH. CONCLUSION: We found that losses of 4q, 8p and 13q were closely correlated with an increasing number of aberrations detected by aCGH, whereas a loss of 4q and a gain of 8q were also observed in the context of polyploidization, the cytogenetic correlate of morphological dedifferentiation.