49 resultados para Chebyshev And Binomial Distributions
Resumo:
The Genesis mission Solar Wind Concentrator was built to enhance fluences of solar wind by an average of 20x over the 2.3 years that the mission exposed substrates to the solar wind. The Concentrator targets survived the hard landing upon return to Earth and were used to determine the isotopic composition of solar-wind—and hence solar—oxygen and nitrogen. Here we report on the flight operation of the instrument and on simulations of its performance. Concentration and fractionation patterns obtained from simulations are given for He, Li, N, O, Ne, Mg, Si, S, and Ar in SiC targets, and are compared with measured concentrations and isotope ratios for the noble gases. Carbon is also modeled for a Si target. Predicted differences in instrumental fractionation between elements are discussed. Additionally, as the Concentrator was designed only for ions ≤22 AMU, implications of analyzing elements as heavy as argon are discussed. Post-flight simulations of instrumental fractionation as a function of radial position on the targets incorporate solar-wind velocity and angular distributions measured in flight, and predict fractionation patterns for various elements and isotopes of interest. A tighter angular distribution, mostly due to better spacecraft spin stability than assumed in pre-flight modeling, results in a steeper isotopic fractionation gradient between the center and the perimeter of the targets. Using the distribution of solar-wind velocities encountered during flight, which are higher than those used in pre-flight modeling, results in elemental abundance patterns slightly less peaked at the center. Mean fractionations trend with atomic mass, with differences relative to the measured isotopes of neon of +4.1±0.9 ‰/amu for Li, between -0.4 and +2.8 ‰/amu for C, +1.9±0.7‰/amu for N, +1.3±0.4 ‰/amu for O, -7.5±0.4 ‰/amu for Mg, -8.9±0.6 ‰/amu for Si, and -22.0±0.7 ‰/amu for S (uncertainties reflect Monte Carlo statistics). The slopes of the fractionation trends depend to first order only on the relative differential mass ratio, Δ m/ m. This article and a companion paper (Reisenfeld et al. 2012, this issue) provide post-flight information necessary for the analysis of the Genesis solar wind samples, and thus serve to complement the Space Science Review volume, The Genesis Mission (v. 105, 2003).
Resumo:
This study examines how different microphysical parameterization schemes influence orographically induced precipitation and the distributions of hydrometeors and water vapour for midlatitude summer conditions in the Weather Research and Forecasting (WRF) model. A high-resolution two-dimensional idealized simulation is used to assess the differences between the schemes in which a moist air flow is interacting with a bell-shaped 2 km high mountain. Periodic lateral boundary conditions are chosen to recirculate atmospheric water in the domain. It is found that the 13 selected microphysical schemes conserve the water in the model domain. The gain or loss of water is less than 0.81% over a simulation time interval of 61 days. The differences of the microphysical schemes in terms of the distributions of water vapour, hydrometeors and accumulated precipitation are presented and discussed. The Kessler scheme, the only scheme without ice-phase processes, shows final values of cloud liquid water 14 times greater than the other schemes. The differences among the other schemes are not as extreme, but still they differ up to 79% in water vapour, up to 10 times in hydrometeors and up to 64% in accumulated precipitation at the end of the simulation. The microphysical schemes also differ in the surface evaporation rate. The WRF single-moment 3-class scheme has the highest surface evaporation rate compensated by the highest precipitation rate. The different distributions of hydrometeors and water vapour of the microphysical schemes induce differences up to 49 W m−2 in the downwelling shortwave radiation and up to 33 W m−2 in the downwelling longwave radiation.
Resumo:
Information on how species distributions and ecosystem services are impacted by anthropogenic climate change is important for adaptation planning. Palaeo data suggest that Abies alba formed forests under significantly warmer-than-present conditions in Europe and might be a native substitute for widespread drought-sensitive temperate and boreal tree species such as beech (Fagus sylvatica) and spruce (Picea abies) under future global warming conditions. Here, we combine pollen and macrofossil data, modern observations, and results from transient simulations with the LPX-Bern dynamic global vegetation model to assess past and future distributions of A. alba in Europe. LPX-Bern is forced with climate anomalies from a run over the past 21 000 years with the Community Earth System Model, modern climatology, and with 21st-century multimodel ensemble results for the high-emission RCP8.5 and the stringent mitigation RCP2.6 pathway. The simulated distribution for present climate encompasses the modern range of A. alba, with the model exceeding the present distribution in north-western and southern Europe. Mid-Holocene pollen data and model results agree for southern Europe, suggesting that at present, human impacts suppress the distribution in southern Europe. Pollen and model results both show range expansion starting during the Bølling–Allerød warm period, interrupted by the Younger Dryas cold, and resuming during the Holocene. The distribution of A. alba expands to the north-east in all future scenarios, whereas the potential (currently unrealized) range would be substantially reduced in southern Europe under RCP8.5. A. alba maintains its current range in central Europe despite competition by other thermophilous tree species. Our combined palaeoecological and model evidence suggest that A. alba may ensure important ecosystem services including stand and slope stability, infrastructure protection, and carbon sequestration under significantly warmer-than-present conditions in central Europe.
Resumo:
Carotid atherosclerotic disease is highly related to cerebrovascular events. Carotid endarterectomy is the common operation method to treat this disease. In this study, hemodynamics analyses are performed on the carotid arteries in three patients, whose right carotid artery had been treated by carotid endarterectomy and the left carotid artery remained untreated. Flow and loading conditions are compared between these treated and untreated carotid arteries and evaluation of the operative results is discussed. Patient-specific models are reconstructed from MDCT data. Intraoperative ultrasound flow measurements are performed on the treated carotid arteries and the obtained data are used as the boundary conditions of the models and the validations of the computational results. Finite volume method is employed to solve the transport equations and the flow and loading conditions of the models are reported. The results indicate that: (i) in two of the three patients, the internal-to-external flow rate ratio in the untreated carotid artery is larger than that in the treated one, and the average overall flow split ratio by summing up the data of both the left and right carotid arteries is about 2.15; (ii) in the carotid bulb, high wall shear stress occurs at the bifurcation near the external carotid artery in all of the cases without hard plaques; (iii) the operated arteries present low time-averaged wall shear stress at the carotid bulb, especially for the treated arteries with patch technique, indicating the possibility of the recurrence of stenosis; (iv) high temporal gradient of wall shear stress (>35 Pa/s) is shown in the narrowing regions along the vessels; and (v) in the carotid arteries without serious stenosis, the maximum velocity magnitude during mid-diastole is 32~37% of that at systolic peak, however, in the carotid artery with 50% stenosis by hard plaques, this value is nearly doubled (64%). The computational work quantifies flow and loading distributions in the treated and untreated carotid arteries of the same patient, contributing to evaluation of the operative results and indicating the recurrent sites of potential atheromatous plaques.
Resumo:
Most European firs occur predominantly in small to medium-sized populations in the Mediterranean region, sometimes with fragmented and limited distributions, except for silver fir (Abies alba). They all are genetically closely related and can easily hybridise, perhaps as a consequence of late speciation during the late Quaternary. Circum-Mediterranean firs occur principally in mountain areas with medium to high precipitations rates which are mostly concentrated during the winter period. The species are able to tolerate long droughts in summer and tend to form pure stands when in optimal habitats. In the past firs have been extensively logged for construction and fire wood and their stands were replaced by other more disturbance adapted species or converted into rural areas. Nowadays with the exception of silver fir and Caucasian fir (Abies nordmanniana), circum-Mediterranean firs do not have a wide commercial interest. In Turkey they are still exploited for timber wood, while other firs have an ornamental use in gardening. Great importance is given to their preservation, especially to those populations which have very limited areas and specimens, with the creation of protected reserves and conservation programmes. Wild fires, livestock grazing and genetic drift represent actually their main threats.
New fully kinetic model for the study of electric potential, plasma, and dust above lunar landscapes
Resumo:
We have developed a new fully kinetic electrostatic simulation, HYBes, to study how the lunar landscape affects the electric potential and plasma distributions near the surface and the properties of lifted dust. The model embodies new techniques that can be used in various types of physical environments and situations. We demonstrate the applicability of the new model in a situation involving three charged particle species, which are solar wind electrons and protons, and lunar photoelectrons. Properties of dust are studied with test particle simulations by using the electric fields derived from the HYBes model. Simulations show the high importance of the plasma and the electric potential near the surface. For comparison, the electric potential gradients near the landscapes with feature sizes of the order of the Debye length are much larger than those near a flat surface at different solar zenith angles. Furthermore, dust test particle simulations indicate that the landscape relief influences the dust location over the surface. The study suggests that the local landscape has to be taken into account when the distributions of plasma and dust above lunar surface are studied. The HYBes model can be applied not only at the Moon but also on a wide range of airless planetary objects such as Mercury, other planetary moons, asteroids, and nonactive comets.
Resumo:
Information-centric networking (ICN) is a new communication paradigm that has been proposed to cope with drawbacks of host-based communication protocols, namely scalability and security. In this thesis, we base our work on Named Data Networking (NDN), which is a popular ICN architecture, and investigate NDN in the context of wireless and mobile ad hoc networks. In a first part, we focus on NDN efficiency (and potential improvements) in wireless environments by investigating NDN in wireless one-hop communication, i.e., without any routing protocols. A basic requirement to initiate informationcentric communication is the knowledge of existing and available content names. Therefore, we develop three opportunistic content discovery algorithms and evaluate them in diverse scenarios for different node densities and content distributions. After content names are known, requesters can retrieve content opportunistically from any neighbor node that provides the content. However, in case of short contact times to content sources, content retrieval may be disrupted. Therefore, we develop a requester application that keeps meta information of disrupted content retrievals and enables resume operations when a new content source has been found. Besides message efficiency, we also evaluate power consumption of information-centric broadcast and unicast communication. Based on our findings, we develop two mechanisms to increase efficiency of information-centric wireless one-hop communication. The first approach called Dynamic Unicast (DU) avoids broadcast communication whenever possible since broadcast transmissions result in more duplicate Data transmissions, lower data rates and higher energy consumption on mobile nodes, which are not interested in overheard Data, compared to unicast communication. Hence, DU uses broadcast communication only until a content source has been found and then retrieves content directly via unicast from the same source. The second approach called RC-NDN targets efficiency of wireless broadcast communication by reducing the number of duplicate Data transmissions. In particular, RC-NDN is a Data encoding scheme for content sources that increases diversity in wireless broadcast transmissions such that multiple concurrent requesters can profit from each others’ (overheard) message transmissions. If requesters and content sources are not in one-hop distance to each other, requests need to be forwarded via multi-hop routing. Therefore, in a second part of this thesis, we investigate information-centric wireless multi-hop communication. First, we consider multi-hop broadcast communication in the context of rather static community networks. We introduce the concept of preferred forwarders, which relay Interest messages slightly faster than non-preferred forwarders to reduce redundant duplicate message transmissions. While this approach works well in static networks, the performance may degrade in mobile networks if preferred forwarders may regularly move away. Thus, to enable routing in mobile ad hoc networks, we extend DU for multi-hop communication. Compared to one-hop communication, multi-hop DU requires efficient path update mechanisms (since multi-hop paths may expire quickly) and new forwarding strategies to maintain NDN benefits (request aggregation and caching) such that only a few messages need to be transmitted over the entire end-to-end path even in case of multiple concurrent requesters. To perform quick retransmission in case of collisions or other transmission errors, we implement and evaluate retransmission timers from related work and compare them to CCNTimer, which is a new algorithm that enables shorter content retrieval times in information-centric wireless multi-hop communication. Yet, in case of intermittent connectivity between requesters and content sources, multi-hop routing protocols may not work because they require continuous end-to-end paths. Therefore, we present agent-based content retrieval (ACR) for delay-tolerant networks. In ACR, requester nodes can delegate content retrieval to mobile agent nodes, which move closer to content sources, can retrieve content and return it to requesters. Thus, ACR exploits the mobility of agent nodes to retrieve content from remote locations. To enable delay-tolerant communication via agents, retrieved content needs to be stored persistently such that requesters can verify its authenticity via original publisher signatures. To achieve this, we develop a persistent caching concept that maintains received popular content in repositories and deletes unpopular content if free space is required. Since our persistent caching concept can complement regular short-term caching in the content store, it can also be used for network caching to store popular delay-tolerant content at edge routers (to reduce network traffic and improve network performance) while real-time traffic can still be maintained and served from the content store.
Resumo:
Context. Young, nearby stars are ideal targets for direct imaging searches for giant planets and brown dwarf companions. After the first-imaged planet discoveries, vast efforts have been devoted to the statistical analysis of the occurence and orbital distributions of giant planets and brown dwarf companions at wide (>= 5-6 AU) orbits. Aims. In anticipation of the VLT/SPHERE planet-imager, guaranteed-time programs, we have conducted a preparatory survey of 86 stars between 2009 and 2013 to identify new faint comoving companions to ultimately analyze the occurence of giant planets and brown dwarf companions at wide (10-2000 AU) orbits around young, solar-type stars. Methods. We used NaCo at VLT to explore the occurrence rate of giant planets and brown dwarfs between typically 0.1 and 8 ''. Diffraction-limited observations in H-band combined with angular differential imaging enabled us to reach primary star-companion brightness ratios as small as 10(-6) at 1.5 ''. Repeated observations at several epochs enabled us to discriminate comoving companions from background objects. Results. During our survey, twelve systems were resolved as new binaries, including the discovery of a new white dwarf companion to the star HD8049. Around 34 stars, at least one companion candidate was detected in the observed field of view. More than 400 faint sources were detected; 90% of them were in four crowded fields. With the exception of HD8049 B, we did not identify any new comoving companions. The survey also led to spatially resolved images of the thin debris disk around HD61005 that have been published earlier. Finally, considering the survey detection limits, we derive a preliminary upper limit on the frequency of giant planets for the semi-major axes of [10, 2000] AU: typically less than 15% between 100 and 500 AU and less than 10% between 50 and 500 AU for exoplanets that are more massive than 5 M-Jup and 10 M-Jup respectively, if we consider a uniform input distribution and a confidence level of 95%. Conclusions. The results from this survey agree with earlier programs emphasizing that massive, gas giant companions on wide orbits around solar-type stars are rare. These results will be part of a broader analysis of a total of similar to 210 young, solar-type stars to bring further statistical constraints for theoretical models of planetary formation and evolution.
Resumo:
A new multimodal biometric database designed and acquired within the framework of the European BioSecure Network of Excellence is presented. It is comprised of more than 600 individuals acquired simultaneously in three scenarios: 1) over the Internet, 2) in an office environment with desktop PC, and 3) in indoor/outdoor environments with mobile portable hardware. The three scenarios include a common part of audio/video data. Also, signature and fingerprint data have been acquired both with desktop PC and mobile portable hardware. Additionally, hand and iris data were acquired in the second scenario using desktop PC. Acquisition has been conducted by 11 European institutions. Additional features of the BioSecure Multimodal Database (BMDB) are: two acquisition sessions, several sensors in certain modalities, balanced gender and age distributions, multimodal realistic scenarios with simple and quick tasks per modality, cross-European diversity, availability of demographic data, and compatibility with other multimodal databases. The novel acquisition conditions of the BMDB allow us to perform new challenging research and evaluation of either monomodal or multimodal biometric systems, as in the recent BioSecure Multimodal Evaluation campaign. A description of this campaign including baseline results of individual modalities from the new database is also given. The database is expected to be available for research purposes through the BioSecure Association during 2008.
Resumo:
Background There is a lack of international research on suicide by drug overdose as a preventable suicide method. Sex- and age-specific rates of suicide by drug self-poisoning (ICD-10, X60-64) and the distribution of drug types used in 16 European countries were studied, and compared with other self-poisoning methods (X65-69) and intentional self-injury (X70-84). Methods Data for 2000-04/05 were collected from national statistical offices. Age-adjusted suicide rates, and age and sex distributions, were calculated. Results No pronounced sex differences in drug self-poisoning rates were found, either in the aggregate data (males 1.6 and females 1.5 per 100,000) or within individual countries. Among the 16 countries, the range (from some 0.3 in Portugal to 5.0 in Finland) was wide. 'Other and unspecified drugs' (X64) were recorded most frequently, with a range of 0.2-1.9, and accounted for more than 70% of deaths by drug overdose in France, Luxembourg, Portugal and Spain. Psychotropic drugs (X61) ranked second. The X63 category ('other drugs acting on the autonomic nervous system') was least frequently used. Finland showed low X64 and high X61 figures, Scotland had high levels of X62 ('narcotics and hallucinogens, not elsewhere classified') for both sexes, while England exceeded other countries in category X60. Risk was highest among the middle-aged everywhere except in Switzerland, where the elderly were most at risk. Conclusions Suicide by drug overdose is preventable. Intentional self-poisoning with drugs kills as many males as females. The considerable differences in patterns of self-poisoning found in the various European countries are relevant to national efforts to improve diagnostics of suicide and appropriate specific prevention. The fact that vast majority of drug-overdose suicides came under the category X64 refers to the need of more detailed ICD coding system for overdose suicides is needed to permit better design of suicide-prevention strategies at national level.
Resumo:
Dispersal and recruitment are central processes that shape the geographic and temporal distributions of populations of marine organisms. However, significant variability in factors such as reproductive output, larval transport, survival, and settlement success can alter the genetic identity of recruits from year to year. We designed a temporal and spatial sampling protocol to test for genetic heterogeneity among adults and recruits from multiple time points along a similar to 400 km stretch of the Oregon (USA) coastline. In total, 2824 adult and recruiting Balanus glandula were sampled between 2001 and 2008 from 9 sites spanning the Oregon coast. Consistent with previous studies, we observed high mitochondrial DNA diversity at the cytochrome oxidase I locus (884 unique haplotypes) and little to no spatial genetic population structure among the 9 sites (Phi(ST) = 0.00026, p = 0.170). However, subtle but significant temporal shifts in genetic composition were observed among year classes (Phi(ST) = 0.00071, p = 0.035), and spatial Phi(ST) varied from year to year. These temporal shifts in genetic structure were correlated with yearly differences in the strength of coastal upwelling (p = 0.002), with greater population structure observed in years with weaker upwelling. Higher levels of barnacle settlement were also observed in years with weaker upwelling (p < 0.001). These data suggest the hypothesis that low upwelling intensity maintains more local larvae close to shore, thereby shaping the genetic structure and settlement rate of recruitment year classes.
Resumo:
We present an overview of different methods for decomposing a multichannel spontaneous electroencephalogram (EEG) into sets of temporal patterns and topographic distributions. All of the methods presented here consider the scalp electric field as the basic analysis entity in space. In time, the resolution of the methods is between milliseconds (time-domain analysis), subseconds (time- and frequency-domain analysis) and seconds (frequency-domain analysis). For any of these methods, we show that large parts of the data can be explained by a small number of topographic distributions. Physically, this implies that the brain regions that generated one of those topographies must have been active with a common phase. If several brain regions are producing EEG signals at the same time and frequency, they have a strong tendency to do this in a synchronized mode. This view is illustrated by several examples (including combined EEG and functional magnetic resonance imaging (fMRI)) and a selective review of the literature. The findings are discussed in terms of short-lasting binding between different brain regions through synchronized oscillations, which could constitute a mechanism to form transient, functional neurocognitive networks.
Resumo:
One limitation to the widespread implementation of Monte Carlo (MC) patient dose-calculation algorithms for radiotherapy is the lack of a general and accurate source model of the accelerator radiation source. Our aim in this work is to investigate the sensitivity of the photon-beam subsource distributions in a MC source model (with target, primary collimator, and flattening filter photon subsources and an electron subsource) for 6- and 18-MV photon beams when the energy and radial distributions of initial electrons striking a linac target change. For this purpose, phase-space data (PSD) was calculated for various mean electron energies striking the target, various normally distributed electron energy spread, and various normally distributed electron radial intensity distributions. All PSD was analyzed in terms of energy, fluence, and energy fluence distributions, which were compared between the different parameter sets. The energy spread was found to have a negligible influence on the subsource distributions. The mean energy and radial intensity significantly changed the target subsource distribution shapes and intensities. For the primary collimator and flattening filter subsources, the distribution shapes of the fluence and energy fluence changed little for different mean electron energies striking the target, however, their relative intensity compared with the target subsource change, which can be accounted for by a scaling factor. This study indicates that adjustments to MC source models can likely be limited to adjusting the target subsource in conjunction with scaling the relative intensity and energy spectrum of the primary collimator, flattening filter, and electron subsources when the energy and radial distributions of the initial electron-beam change.
Resumo:
We developed a gel- and label-free proteomics platform for comparative studies of human serum. The method involves the depletion of the six most abundant proteins, protein fractionation by Off-Gel IEF and RP-HPLC, followed by tryptic digestion, LC-MS/MS, protein identification, and relative quantification using probabilistic peptide match score summation (PMSS). We evaluated performance and reproducibility of the complete platform and the individual dimensions, by using chromatograms of the RP-HPLC runs, PMSS based abundance scores and abundance distributions as objective endpoints. We were interested if a relationship exists between the quantity ratio and the PMSS score ratio. The complete analysis was performed four times with two sets of serum samples containing different concentrations of spiked bovine beta-lactoglobulin (0.1 and 0.3%, w/w). The two concentrations resulted in significantly differing PMSS scores when compared to the variability in PMSS scores of all other protein identifications. We identified 196 proteins, of which 116 were identified four times in corresponding fractions whereof 73 qualified for relative quantification. Finally, we characterized the PMSS based protein abundance distributions with respect to the two dimensions of fractionation and discussed some interesting patterns representing discrete isoforms. We conclude that combination of Off-Gel electrophoresis (OGE) and HPLC is a reproducible protein fractionation technique, that PMSS is applicable for relative quantification, that the number of quantifiable proteins is always smaller than the number of identified proteins and that reproducibility of protein identifications should supplement probabilistic acceptance criteria.
Resumo:
We present an overview of our analyses of HiRISE observations of spring evolution of selected dune areas of the north polar erg. The north polar erg is covered annually by seasonal volatile ice layer, a mixture of CO2 and H2O with mineral dust contamination. In spring, this layer sublimes creating visually enigmatic phenomena, e.g. dark and bright fan-shaped deposits, dark–bright–dark bandings, dark down-slope streaks, and seasonal polygonal cracks. Similar phenomena in southern polar areas are believed to be related to the specific process of solid-state greenhouse effect. In the north, it is currently unclear if the solid-state greenhouse effect is able to explain all the observed phenomena especially because the increased influence of H2O on the time scales of this process has not yet been quantified. HiRISE observations of our selected locations show that the ground exhibits a temporal behaviour similar to the one observed in the southern polar areas: a brightening phase starting close to the spring equinox with a subsequent darkening towards summer solstice. The resolution of HiRISE enabled us to study dunes and substrate individually and even distinguish between different developments on windward and slip face sides of single dunes. Differences in the seasonal evolution between steep slip faces and flatter substrate and windward sides of dunes have been identified and compared to CRISM data of CO2 and H2O distributions on dunes. We also observe small scale dark blotches that appear in early observations and tend to sustain a low reflectivity throughout the spring. These blotches can be regarded as the analogue of dark fan deposits in southern polar areas, leading us to the conclusion that both martian polar areas follow similar spring evolutions.