57 resultados para Central Control Of Bone Formation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the osteoinductive potential of deproteinized bovine bone mineral (DBBM) and an enamel matrix derivative (EMD) in the muscle of rats. Sixteen rats were used in this study. The animals were divided in three groups. Group A: a pouch was created in one of the pectoralis profundis muscles of the thorax of the rats and DBBM particles (Bio-Oss) were placed into the pouch. Healing: 60 days. Group B: a small pouch was created on both pectoralis profundis muscles at each side of the thorax midline. In one side, a mixture of EMD (Emdogain) mixed with DBBM was placed into one of the pouches, whereas in the contralateral side of the thorax the pouch was implanted with DBBM mixed with the propylene glycol alginate (PGA--carrier for enamel matrix proteins of EMD). Healing: 60 days. Group C: the same procedure as group B, but with a healing period of 120 days. Qualitative histological analysis of the results was performed. At 60 days, the histological appearance of the DBBM particles implanted alone was similar to that of the particles implanted together with EMD or PGA at both 60 and 120 days. The DBBM particles were encapsulated into a connective tissue stroma and an inflammatory infiltrate. At 120 days, the DBBM particles implanted together with EMD or PGA exhibited the presence of resorption lacunae in some cases. Intramuscular bone formation was not encountered in any group. The implantation of DBBM particles alone, combined with EMD or its carrier (PGA) failed to exhibit extraskeletal, bone-inductive properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: A novel biphasic calcium phosphate (CaP) granulate consisting of hydroxyapatite (HA) and beta-tricalciumphosphate (TCP) was compared with pure HA and pure TCP and with autograft as positive control. MATERIALS AND METHODS: Four standardized bone defects were prepared in both mandibular angles of 16 minipigs and grafted with autogenous bone chips, HA, HA/TCP (60% : 40%), or TCP. Histologic and histomorphometric analysis of bone formation and graft degradation followed healing periods of 2, 4, 8, and 24 weeks. RESULTS: 2 weeks: more bone formation in defects filled with autograft than with the three CaP materials (P<0.05). 4 weeks: bone formation differed significantly (P<0.05) between all four materials (autograft>TCP>HA/TCP>HA). 8 weeks: more bone formation in defects with autograft and TCP than with HA/TCP (P<0.05), and HA/TCP had more bone formation than HA (P<0.05). 24 weeks: no difference in bone formation between the groups. Autograft and TCP resorbed quickly and almost completely over 8 weeks, whereas HA/TCP and HA showed limited degradation over 24 weeks. CONCLUSION: All defects healed with mature lamellar bone and intimate contact between bone and the remaining graft material. The rate of bone formation corresponded to the content of TCP in the CaP materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Deproteinized bovine bone mineral (DBBM) is one of the best-documented bone substitute materials for sinus floor elevation (SFE). PURPOSE DBBM is available in two particle sizes. Large particles are believed to facilitate improved neoangiogenesis compared with small ones. However, their impact on the rate of new bone formation, osteoconduction, and DBBM degradation has never been reported. In addition, the implant stability quotient (ISQ) has never been correlated to bone-to-implant contact (BIC) after SFE with simultaneous implant placement. MATERIALS AND METHODS Bilateral SFE with simultaneous implant placement was performed in 10 Göttingen minipigs. The two sides were randomized to receive large or small particle size DBBM. Two groups of 5 minipigs healed for 6 and 12 weeks, respectively. ISQ was recorded immediately after implant placement and at sacrifice. Qualitative histological differences were described and bone formation, DBBM degradation, BIC and bone-to-DBBM contact (osteoconduction) were quantified histomorphometrically. RESULTS DBBM particle size had no qualitative or quantitative impact on the amount of newly formed bone, DBBM degradation, or BIC for either of the healing periods (p > 0.05). Small-size DBBM showed higher osteoconduction after 6 weeks than large-size DBBM (p < 0.001). After 12 weeks this difference was compensated. There was no significant correlation between BIC and ISQ. CONCLUSION Small and large particle sizes were equally predictable when DBBM was used for SFE with simultaneous implant placement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES Previously, the use of enamel matrix derivative (EMD) in combination with a natural bone mineral (NBM) was able to stimulate periodontal ligament cell and osteoblast proliferation and differentiation. Despite widespread use of EMD for periodontal applications, the effects of EMD on bone regeneration are not well understood. The aim of the present study was to test the ability of EMD on bone regeneration in a rat femur defect model in combination with NBM. MATERIALS AND METHODS Twenty-seven rats were treated with either NBM or NBM + EMD and assigned to histological analysis at 2, 4, and 8 weeks. Defect morphology and mineralized bone were assessed by μCT. For descriptive histology, hematoxylin and eosin staining and Safranin O staining were performed. RESULTS Significantly more newly formed trabecular bone was observed at 4 weeks around the NBM particles precoated with EMD when compared with NBM particles alone. The drilled control group, in contrast, achieved minimal bone regeneration at all three time points (P < 0.05). CONCLUSIONS The present results may suggest that EMD has the ability to enhance the speed of new bone formation when combined with NBM particles in rat osseous defects. CLINICAL RELEVANCE These findings may provide additional clinical support for the combination of EMD with bone graft for the repair of osseous and periodontal intrabony defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) is a mediator involved in bone regeneration. We therefore examined the effect of the novel NO donor, S-nitroso human serum albumin (S-NO-HSA) on bone formation in a rabbit calvaria augmentation model. Circular grooves (8 mm diameter, two per animal) were created by a trephine drill in the cortical bone of 40 rabbits and titanium caps were placed on the rabbit calvaria bone filled with a collagen sponge soaked with either 100 μL S-NO-HSA (5%, 20%) or human albumin (5%, 20%). After 4 weeks the titanium hemispheres were subjected to histological and histomorphometric analysis. Bone formation and the volume of the residual collagen sponge were evaluated. S-NO-HSA treatment groups had a significantly higher volume of newly formed bone underneath the titanium hemispheres compared to the albumin control groups (5%: 15.5 ± 4.0% versus 10.6 ± 2.9%; P < 0.05; 20%: 14.0 ± 4.6% versus 6.0 ± 3.8%; P < 0.01). The volume of residual collagen sponge was also significantly lower in the S-NO-HSA groups compared to the control groups (5%: 0.4 ± 0.5% versus 2.6 ± 2.4%; P < 0.05 and 20%: 1.5 ± 2.7% versus 13.0 ± 18.7%; P < 0.01). This study demonstrates for the first time that S-NO-HSA promotes bone formation by slow NO release. Additionally, S-NO-HSA increases collagen sponge degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The aim of this study was to evaluate the hard and soft tissue parameters around implants supporting overdentures and the possible influence of increased periimplant bone density (IPBD) on implant success. MATERIALS AND METHODS: A total of 44 dental implants placed in the mandible of 12 patients were included in the study. Implants were divided in 2 groups in relation to the optically detected IPBD. Periimplant clinical and radiographic variables were collected over the period of 5 years. RESULTS: Periimplant clinical and radiographic parameters for all implants did not change significantly throughout the observation period (P > 0.05). Significant differences were observed between implants with and without IPBD for periimplant soft tissue parameters and Periotest values (P < 0.05). Implants with and without IPBD at 5-year control showed mean bone loss of 0.04 ± 0.48 mm and 0.55 ± 0.96 mm, respectively (P = 0.026). All density values decreased throughout the observation period, except maximal values for implants with IPBD that overcome the initial values at the 5-year control. CONCLUSIONS: Implants supporting overdentures were clinically successful over the period of follow-up. IPBD may be related to the maintenance of the periimplant bone level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Discectomy and spinal fusion is the gold standard for spinal surgery to relieve pain. However, fusion can be hindered for yet unknown reasons that lead to non-fusions with pseudo-arthrose. It is hence appealing to develop biomaterials that can enhance bone formation. Clinical observations indicate that presence of residual intervertebral disc (IVD) tissue might hinder the ossification. We hypothesize that BMP-antagonists are constantly secreted by IVD cells and potentially prevent the ossification process. Furthermore, L51P, the engineered BMP2 variant, stimulates osteoinduction of bone marrow-derived mesenchymal stem cells (MSC) by antagonizing BMP-inhibitors. Methods: Human MSCs, primary nucleus pulposus (NPC) and annulus pulposus cells (AFC) were isolated and expanded in monolayer cultures up to passage 3. IVD cells were seeded in 1.2% alginate beads (4Mio/mL) and separated by culture inserts from MSCs in a co-culture set-up. MSCs were kept in 1:control medium, 2:osteogenic medium+alginate control, 3:osteogenic medium+NPC (±L51P) and 4:osteogenic medium+AFC (±L51P) for 21 days. Relative gene expression of bone-related genes, Alkaline Phosphatase (ALP) assay and histological staining were performed. Results: Osteogenesis of MSCs was hindered as shown by reduced alizarin red staining in the presence of NPC. No such inhibition was observed if co-cultured with alginate only or in the presence of AFC. The results were confirmed on the RNA and protein level. Addition of L51P to the co-cultures induced mineralization of MSCs, however a reduced ALP was observed. Conclusion: We demonstrated that NPC secrete BMP-antagonists that prevent osteogenesis of MSCs and L51P can antagonize BMP-antagonists and induce bone formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone formation and osseointegration of biomaterials are dependent on angiogenesis and vascularization. Angiogenic growth factors such as vascular endothelial growth factor (VEGF) were shown to promote biomaterial vascularization and enhance bone formation. However, high local concentrations of VEGF induce the formation of malformed, nonfunctional vessels. We hypothesized that a continuous delivery of low concentrations of VEGF from calcium phosphate ceramics may increase the efficacy of VEGF administration.VEGF was co-precipitated onto biphasic calcium phosphate (BCP) ceramics to achieve a sustained release of the growth factor. The co-precipitation efficacy and the release kinetics of the protein were investigated in vitro. For in vivo investigations BCP ceramics were implanted into critical size cranial defects in Balb/c mice. Angiogenesis and microvascularization were investigated over 28 days by means of intravital microscopy. The formation of new bone was determined histomorphometrically. Co-precipitation reduced the burst release of VEGF. Furthermore, a sustained, cell-mediated release of low concentrations of VEGF from BCP ceramics was mediated by resorbing osteoclasts. In vivo, sustained delivery of VEGF achieved by protein co-precipitation promoted biomaterial vascularization, osseointegration, and bone formation. Short-term release of VEGF following superficial adsorption resulted in a temporally restricted promotion of angiogenesis and did not enhance bone formation. The release kinetics of VEGF appears to be an important factor in the promotion of biomaterial vascularization and bone formation. Sustained release of VEGF increased the efficacy of VEGF delivery demonstrating that a prolonged bioavailability of low concentrations of VEGF is beneficial for bone regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently reported that brief, remotely controlled intrameal hepatic-portal vein infusions of glucagon-like peptide-1 (GLP-1) reduced spontaneous meal size in rats. To investigate the neurobehavioural correlates of this effect, we equipped male Sprague-Dawley rats with hepatic-portal vein catheters and assessed (i) the effect on eating of remotely triggered infusions of GLP-1 (1 nmol/kg, 5 min) or vehicle during the first nocturnal meal after 3 h of food deprivation and (ii) the effect of identical infusions performed at dark onset on c-Fos expression in several brain areas involved in the control of eating. GLP-1 reduced (P < 0.05) the size of the first nocturnal meal and increased its satiety ratio. Also, GLP-1 increased (P < 0.05) the number of c-Fos-expressing cells in the nucleus tractus solitarii, the area postrema and the central nucleus of the amygdala, but not in the arcuate or paraventricular hypothalamic nuclei. These data suggest that the nucleus tractus solitarii, the area postrema and the central nucleus of the amygdala play a role in the eating-inhibitory actions of GLP-1 infused into the hepatic-portal vein; it remains to be established whether activation of these brain nuclei reflect satiation, aversion, or both.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinically, the displacement of intravertebral fat into the circulation during vertebroplasty is reported to lead to problems in elderly patients and can represent a serious complication, especially when multiple levels have to be treated. An in vitro study has shown the feasibility of removing intravertebral fat by pulsed jet-lavage prior to vertebroplasty, potentially reducing the embolization of bone marrow fat from the vertebral bodies and alleviating the cardiovascular changes elicited by pulmonary fat embolism. In this in vivo study, percutaneous vertebroplasty using polymethylmethacrylate (PMMA) was performed in three lumbar vertebrae of 11 sheep. In six sheep (lavage group), pulsed jet-lavage was performed prior to injection of PMMA compared to the control group of five sheep receiving only PMMA vertebroplasty. Invasive recording of blood pressures was performed continuously until 60 min after the last injection. Cardiac output and arterial blood gas parameters were measured at selected time points. Post mortem, the injected cement volume was measured using CT and lung biopsies were processed for assessment of intravascular fat. Pulsed jet-lavage was feasible in the in vivo setting. In the control group, the injection of PMMA resulted in pulmonary fat embolism and a sudden and significant increase in mean pulmonary arterial pressure. Pulsed jet-lavage prevented any cardiovascular changes and significantly reduced the severity of bone marrow fat embolization. Even though significantly more cement had been injected into the lavaged vertebral bodies, significantly fewer intravascular fat emboli were identified in the lung tissue. Pulsed jet-lavage prevented the cardiovascular complications after PMMA vertebroplasty in sheep and alleviated the severity of pulmonary fat embolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate morphologically and morphometrically the sequential healing and osseointegration events at moderately rough implant surfaces with and without chemical modification. Particularly the role of bone debris in initiating bone formation was emphasized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Autogenous bone grafts obtained by different harvesting techniques behave differently during the process of graft consolidation; the underlying reasons are however not fully understood. One theory is that harvesting techniques have an impact on the number and activity of the transplanted cells which contribute to the process of graft consolidation. Materials and Methods: To test this assumption, porcine bone grafts were harvested with four different surgical procedures: bone mill, piezosurgery, bone drilling (bone slurry), and bone scraper. After determining cell viability, the release of molecules affecting bone formation and resorption was assessed by reverse transcription polymerase chain reaction and immunoassay. The mitogenic and osteogenic activity of the conditioned media was evaluated in a bioassay with isolated bone cells. Results: Cell viability and the release of molecules affecting bone formation were higher in samples harvested by bone mill and bone scraper when compared with samples prepared by bone drilling and piezosurgery. The harvesting procedure also affected gene expression, for example, bone mill and bone scraper samples revealed significantly higher expression of growth factors such as bone morphogenetic protein-2 and vascular endothelial growth factor compared with the two other modalities. Receptor activator of nuclear factor kappa B ligand expression was lowest in bone scraper samples. Conclusion: These data can provide a scientific basis to better understand the impact of harvesting techniques on the number and activity of transplanted cells, which might contribute to the therapeutic outcome of the augmentation procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the BMP and Wnt protein families play a relevant role in physiologic and pathologic bone turnover. Extracellular antagonists are crucial for the modulation of their activity. Lack of expression of the BMP antagonist noggin by osteoinductive, carcinoma-derived cell lines is a determinant of the osteoblast response induced by their bone metastases. In contrast, osteolytic, carcinoma-derived cell lines express noggin constitutively. We hypothesized that cancer cell-derived noggin may contribute to the pathogenesis of osteolytic bone metastasis of solid cancers by repressing bone formation. Intra-osseous xenografts of PC-3 prostate cancer cells induced osteolytic lesions characterized not only by enhanced osteoclast-mediated bone resorption, but also by decreased osteoblast-mediated bone formation. Therefore, in this model, uncoupling of the bone remodeling process contributes to osteolysis. Bone formation was preserved in the osteolytic lesions induced by noggin-silenced PC-3 cells, suggesting that cancer cell-derived noggin interferes with physiologic bone coupling. Furthermore, intra-osseous tumor growth of noggin-silenced PC-3 cells was limited, most probably as a result of the persisting osteoblast activity. This investigation provides new evidence for a model of osteolytic bone metastasis where constitutive secretion of noggin by cancer cells mediates inhibition of bone formation, thereby preventing repair of osteolytic lesions generated by an excess of osteoclast-mediated bone resorption. Therefore, noggin suppression may be a novel strategy for the treatment of osteolytic bone metastases.