75 resultados para Cell Survival


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chronic hepatitis occurs when effector lymphocytes are recruited to the liver from blood and retained in tissue to interact with target cells, such as hepatocytes or bile ducts (BDs). Vascular cell adhesion molecule 1 (VCAM-1; CD106), a member of the immunoglobulin superfamily, supports leukocyte adhesion by binding a4b1 integrins and is critical for the recruitment of monocytes and lymphocytes during inflammation. We detected VCAM-1 on cholangiocytes in chronic liver disease (CLD) and hypothesized that biliary expression of VCAM-1 contributes to the persistence of liver inflammation. Hence, in this study, we examined whether cholangiocyte expression of VCAM-1 promotes the survival of intrahepatic a4b1 expressing effector T cells. We examined interactions between primary human cholangiocytes and isolated intrahepatic T cells ex vivo and in vivo using the Ova-bil antigen-driven murine model of biliary inflammation. VCAM-1 was detected on BDs in CLDs (primary biliary cirrhosis, primary sclerosing cholangitis, alcoholic liver disease, and chronic hepatitis C), and human cholangiocytes expressed VCAM-1 in response to tumor necrosis factor alpha alone or in combination with CD40L or interleukin-17. Liver-derived T cells adhered to cholangiocytes in vitro by a4b1, which resulted in signaling through nuclear factor kappa B p65, protein kinase B1, and p38 mitogen-activated protein kinase phosphorylation. This led to increased mitochondrial B-cell lymphoma 2 accumulation and decreased activation of caspase 3, causing increased cell survival. We confirmed our findings in a murine model of hepatobiliary inflammation where inhibition of VCAM-1 decreased liver inflammation by reducing lymphocyte recruitment and increasing CD8 and T helper 17 CD4 Tcell survival. Conclusions: VCAM-1 expression by cholangiocytes contributes to persistent inflammation by conferring a survival signal to a4b1 expressing proinflammatory T lymphocytes in CLD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Medulloblastoma (MB) is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K) pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi)-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α) was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH) subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stem cells reside within tissue, ensuring its natural ability to repair an injury. They are involved in the natural repair of damaged tissue, which encompasses a complex process requiring the modulation of cell survival, extracellular matrix turnover, angiogenesis, and reverse remodeling. To date, the real reparative potential of each tissue is underestimated and noncommittal. The assessment of the biophysical properties of the extracellular environment is an innovative approach to better understand mechanisms underlying stem cell function, and consequently to develop safe and effective therapeutic strategies replacing the loss of tissue. Recent studies have focused on the role played by biomechanical signals that drive stem cell death, differentiation, and paracrinicity in a genetic and/or an epigenetic manner. Mechanical stimuli acting on the shape can influence the biochemistry and gene expression of resident stem cells and, therefore, the magnitude of biological responses that promote the healing of injured tissue. Nanotechnologies have proven to be a revolutionary tool capable of dissecting the cellular mechanosensing apparatus, allowing the intercellular cross-talk to be decoded and enabling the reparative potential of tissue to be enhanced without manipulation of stem cells. This review highlights the most relevant findings of stem cell mechanobiology and presents a fascinating perspective in regenerative medicine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The quassinoid analogue NBT-272 has been reported to inhibit MYC, thus warranting a further effort 7to better understand its preclinical properties in models of embryonal tumors (ET), a family of childhood malignancies sharing relevant biological and genetic features such as deregulated expression of MYC oncogenes. In our study, NBT-272 displayed a strong antiproliferative activity in vitro that resulted from the combination of diverse biological effects, ranging from G(1)/S arrest of the cell cycle to apoptosis and autophagy. The compound prevented the full activation of both eukaryotic translation initiation factor 4E (eIF4E) and its binding protein 4EBP-1, regulating cap-dependent protein translation. Interestingly, all responses induced by NBT-272 in ET could be attributed to interference with 2 main proproliferative signaling pathways, that is, the AKT and the MEK/extracellular signal-regulated kinase pathways. These findings also suggested that the depleting effect of NBT-272 on MYC protein expression occurred via indirect mechanisms, rather than selective inhibition. Finally, the ability of NBT-272 to arrest tumor growth in a xenograft model of neuroblastoma plays a role in the strong antitumor activity of this compound, both in vitro and in vivo, with its potential to target cell-survival pathways that are relevant for the development and progression of ET.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Polymorphonuclear neutrophils (PMN) play a key role in host defences against invading microorganisms but can also potentiate detrimental inflammatory reactions in case of excessive or misdirected responses. Intravenous immunoglobulins (IVIg) are used to treat patients with immune deficiencies and, at higher doses, in autoimmune, allergic and systemic inflammatory disorders. Methodology/Principal Findings We used flow cytometry to examine the effects of IVIg on PMN functions and survival, using whole-blood conditions in order to avoid artifacts due to isolation procedures. IVIg at low concentrations induced PMN activation, as reflected by decreased L-selectin and increased CD11b expression at the PMN surface, oxidative burst enhancement, and prolonged cell survival. In contrast, IVIg at higher concentrations inhibited LPS-induced CD11b degranulation and oxidative burst priming, and counteracted LPS-induced PMN lifespan prolongation. Conclusions/Significance IVIg appears to have differential, concentration-dependent effects on PMN, possibly supporting the use of IVIg as either an anti-microbial or an anti-inflammatory agent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor ? (PPAR?) is a transcription factor that promotes differentiation and cell survival in the stomach. PPAR? upregulates and interacts with caveolin-1 (Cav1), a scaffold protein of Ras/mitogen-activated protein kinases (MAPKs). The cytoplasmic-to-nuclear localization of PPAR? is altered in gastric cancer (GC) patients, suggesting a so-far-unknown role for Cav1 in spatial regulation of PPAR? signaling. We show here that loss of Cav1 accelerated proliferation of normal stomach and GC cells in vitro and in vivo. Downregulation of Cav1 increased Ras/MAPK-dependent phosphorylation of serine 84 in PPAR? and enhanced nuclear translocation and ligand-independent transcription of PPAR? target genes. In contrast, Cav1 overexpression sequestered PPAR? in the cytosol through interaction of the Cav1 scaffolding domain (CSD) with a conserved hydrophobic motif in helix 7 of PPAR?'s ligand-binding domain. Cav1 cooperated with the endogenous Ras/MAPK inhibitor docking protein 1 (Dok1) to promote the ligand-dependent transcriptional activity of PPAR? and to inhibit cell proliferation. Ligand-activated PPAR? also reduced tumor growth and upregulated the Ras/MAPK inhibitors Cav1 and Dok1 in a murine model of GC. These results suggest a novel mechanism of PPAR? regulation by which Ras/MAPK inhibitors act as scaffold proteins that sequester and sensitize PPAR? to ligands, limiting proliferation of gastric epithelial cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

B cell activation factor of the TNF family (BAFF) is a potent B cell survival factor. BAFF overexpressing transgenic mice (BAFF-Tg mice) exhibit features of autoimmune disease, including B cell hyperplasia and hypergammaglobulinemia, and develop fatal nephritis with age. However, basal serum IgA levels are also elevated, suggesting that the pathology in these mice may be more complex than initially appreciated. Consistent with this, we demonstrate here that BAFF-Tg mice have mesangial deposits of IgA along with high circulating levels of polymeric IgA that is aberrantly glycosylated. Renal disease in BAFF-Tg mice was associated with IgA, because serum IgA was highly elevated in nephritic mice and BAFF-Tg mice with genetic deletion of IgA exhibited less renal pathology. The presence of commensal flora was essential for the elevated serum IgA phenotype, and, unexpectedly, commensal bacteria-reactive IgA antibodies were found in the blood. These data illustrate how excess B cell survival signaling perturbs the normal balance with the microbiota, leading to a breach in the normal mucosal-peripheral compartmentalization. Such breaches may predispose the nonmucosal system to certain immune diseases. Indeed, we found that a subset of patients with IgA nephropathy had elevated serum levels of a proliferation inducing ligand (APRIL), a cytokine related to BAFF. These parallels between BAFF-Tg mice and human IgA nephropathy may provide a new framework to explore connections between mucosal environments and renal pathology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clinical and experimental evidence indicates that inflammatory processes contribute to the pathophysiology of epilepsy, but underlying mechanisms remain mostly unknown. Using immunohistochemistry for CD45 (common leukocyte antigen) and CD3 (T-lymphocytes), we show here microglial activation and infiltration of leukocytes in sclerotic tissue from patients with mesial temporal lobe epilepsy (TLE), as well as in a model of TLE (intrahippocampal kainic acid injection), characterized by spontaneous, nonconvulsive focal seizures. Using specific markers of lymphocytes, microglia, macrophages, and neutrophils in kainate-treated mice, we investigated with pharmacological and genetic approaches the contribution of innate and adaptive immunity to kainate-induced inflammation and neurodegeneration. Furthermore, we used EEG analysis in mutant mice lacking specific subsets of lymphocytes to explore the significance of inflammatory processes for epileptogenesis. Blood-brain barrier disruption and neurodegeneration in the kainate-lesioned hippocampus were accompanied by sustained ICAM-1 upregulation, microglial cell activation, and infiltration of CD3(+) T-cells. Moreover, macrophage infiltration was observed, selectively in the dentate gyrus where prominent granule cell dispersion was evident. Unexpectedly, depletion of peripheral macrophages by systemic clodronate liposome administration affected granule cell survival. Neurodegeneration was aggravated in kainate-lesioned mice lacking T- and B-cells (RAG1-knock-out), because of delayed invasion by Gr-1(+) neutrophils. Most strikingly, these mutant mice exhibited early onset of spontaneous recurrent seizures, suggesting a strong impact of immune-mediated responses on network excitability. Together, the concerted action of adaptive and innate immunity triggered locally by intrahippocampal kainate injection contributes seizure-suppressant and neuroprotective effects, shedding new light on neuroimmune interactions in temporal lobe epilepsy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Medulloblastoma (MB) is the most common malignant brain tumor in children. It is known that overexpression and/or amplification of the MYC oncogene is associated with poor clinical outcome, but the molecular mechanisms and the MYC downstream effectors in MB remain still elusive. Besides contributing to elucidate how progression of MB takes place, most importantly, the identification of novel MYC-target genes will suggest novel candidates for targeted therapy in MB. A group of 209 MYC-responsive genes was obtained from a complementary DNA microarray analysis of a MB-derived cell line, following MYC overexpression and silencing. Among the MYC-responsive genes, we identified the members of the bone morphogenetic protein (BMP) signaling pathway, which have a crucial role during the development of the cerebellum. In particular, the gene BMP7 was identified as a direct target of MYC. A positive correlation between MYC and BMP7 expression was documented by analyzing two distinct sets of primary MB samples. Functional studies in vitro using a small-molecule inhibitor of the BMP/SMAD signaling pathway reproduced the effect of the small interfering RNA-mediated silencing of BMP7. Both approaches led to a block of proliferation in a panel of MB cells and to inhibition of SMAD phosphorylation. Altogether, our findings indicate that high MYC levels drive BMP7 overexpression, promoting cell survival in MB cells. This observation suggests the potential relevance of targeting the BMP/SMAD pathway as a novel therapeutic approach for the treatment of childhood MB.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Survivin is a member of the inhibitor of apoptosis (IAP) protein family acting at the intersection between proliferation and cell survival. This protein exhibits low or undetectable expression in most adult tissues but is increased in the majority of cancers. Suggested to be one of the most cancer-specific proteins identified to date, survivin acts as a signalling node in tumour maintenance and, after first promising results, is now attracting increasing attention as a target in anti-cancer therapy. In the skin, survivin has been implicated in a number of pathological conditions such as psoriasis and tumours of melanocytic and epithelial origin. Its expression can correlate with tumour severity, metastasis and decreased patient survival and has been inversely correlated with the sensitivity to cytotoxic agents used in anti-cancer therapy. Survivin may also be of importance for normal epidermal homeostasis possibly supporting self-renewal of epidermal stem cells. In this review, the authors summarize and discuss current data of survivin in skin biology and provide a comprehensive compilation of survivin expression in skin pathologies with focus on future therapeutical use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV) is associated with several types of cancers including Hodgkin's lymphoma (HL) and nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane protein 1 (LMP1), a multifunctional oncoprotein, is a powerful activator of the transcription factor NF-κB, a property that is essential for EBV-transformed lymphoblastoid cell survival. Previous studies reported LMP1 sequence variations and induction of higher NF-κB activation levels compared to the prototype B95-8 LMP1 by some variants. Here we used biopsies of EBV-associated cancers and blood of individuals included in the Swiss HIV Cohort Study (SHCS) to analyze LMP1 genetic diversity and impact of sequence variations on LMP1-mediated NF-κB activation potential. We found that a number of variants mediate higher NF-κB activation levels when compared to B95-8 LMP1 and mapped three single polymorphisms responsible for this phenotype: F106Y, I124V and F144I. F106Y was present in all LMP1 isolated in this study and its effect was variant dependent, suggesting that it was modulated by other polymorphisms. The two polymorphisms I124V and F144I were present in distinct phylogenetic groups and were linked with other specific polymorphisms nearby, I152L and D150A/L151I, respectively. The two sets of polymorphisms, I124V/I152L and F144I/D150A/L151I, which were markers of increased NF-κB activation in vitro, were not associated with EBV-associated HL in the SHCS. Taken together these results highlighted the importance of single polymorphisms for the modulation of LMP1 signaling activity and demonstrated that several groups of LMP1 variants, through distinct mutational paths, mediated enhanced NF-κB activation levels compared to B95-8 LMP1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The armadillo family protein plakoglobin (Pg) is a well-characterized component of anchoring junctions, where it functions to mediate cell-cell adhesion and maintain epithelial tissue integrity. Although its closest homolog beta-catenin acts in the Wnt signaling pathway to dictate cell fate and promote proliferation and survival, the role of Pg in these processes is not well understood. Here, we investigate how Pg affects the survival of mouse keratinocytes by challenging both Pg-null cells and their heterozygote counterparts with apoptotic stimuli. Our results indicate that Pg deletion protects keratinocytes from apoptosis, with null cells exhibiting delayed mitochondrial cytochrome c release and activation of caspase-3. Pg-null keratinocytes also exhibit increased messenger RNA and protein levels of the anti-apoptotic molecule Bcl-X(L) compared to heterozygote controls. Importantly, reintroduction of Pg into the null cells shifts their phenotype towards that of the Pg+/- keratinocytes, providing further evidence that Pg plays a direct role in regulating cell survival. Taken together, our results suggest that in addition to its adhesive role in epithelia, Pg may also function in contrast to the pro-survival tendencies of beta-catenin, to potentiate death in cells damaged by apoptotic stimuli, perhaps limiting the potential for the propagation of mutations and cellular transformation.Journal of Investigative Dermatology advance online publication, 16 November 2006; doi:10.1038/sj.jid.5700615.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The efficacy of traditional anti-cancer agents is hampered by toxicity to normal tissues, due to the lack of specificity for malignant cells. Recent advances in our understanding of molecular genetics and tumor biology have led to the identification of signaling pathways and their regulators implicated in tumorigenesis and malignant progression. Consequently, novel biological agents were designed which specifically target key regulators of cell survival and proliferation activated in malignant cells and thus are superior to unspecific cytotoxic agents. Antisense molecules comprising conventional single-stranded antisense oligonucleotides (ASO) and small interfering RNA (siRNA) inhibit gene expression on the transcript level. Thus, they specifically target the genetic basis of cancer and are particularly useful for inhibiting the expression of oncogenes the protein products of which are inaccessible to small molecules or inhibitory antibodies. Despite the somewhat disappointing results of recent antisense oncology trials, the identification of new cancer targets and ongoing progress in ASO and siRNA technology together with improvements in tumor targeted delivery have raised new hopes that this fascinating intervention concept will eventually translate into enhanced clinical efficacy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pericyte loss is an early pathologic feature of diabetic retinopathy, consistently present in retinae of diabetic humans and animals. Because pericyte recruitment and endothelial cell survival are controlled, in part, by the angiopoietin/Tie2 ligand/receptor system, we studied the expression of angiopoietin-2 and -1 in relation to the evolution of pericyte loss in diabetic rat retinae, using quantitative retinal morphometry, and in retinae from mice with heterozygous angiopoietin deficiency (Ang-2 LacZ knock-in mice). Finally, recombinant angiopoietin-2 was injected into eyes of nondiabetic rats, and pericyte numbers were quantitated in retinal capillaries. Angiopoietin-1 protein was present in the normal maturing retina and was upregulated 2.5-fold in diabetic retinae over 3 months of diabetes. In contrast, angiopoietin-2 protein was consistently upregulated more than 30-fold in the retinae of diabetic rats, preceding the onset of pericyte loss. Heterozygous angiopoietin-2 deficiency completely prevented diabetes-induced pericyte loss and reduced the number of acellular capillary segments. Injection of angiopoietin-2 into the eyes of normal rats induced a dose-dependent pericyte loss. These data show that upregulation of angiopoietin-2 plays a critical role in the loss of pericytes in the diabetic retina.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND/AIMS: We investigated the molecular response of a non-ischemic hypoxic stress in the liver, in particular, to distinguish its hepatoprotective potential. METHODS: The livers of mice were subjected to non-ischemic hypoxia by clamping the hepatic-artery (HA) for 2h while maintaining portal circulation. Hypoxia was defined by a decrease in oxygen saturation, the activation of hypoxia-inducible factor (HIF)-1 and the mRNA up-regulation of responsive genes. To demonstrate that the molecular response to hypoxia may in part be hepatoprotective, pre-conditioned animals were injected with an antibody against Fas (Jo2) to induce acute liver failure. Hepatocyte apoptosis was monitored by caspase-3 activity, cleavage of lamin A and animal survival. RESULTS: Clamping the HA induced a hypoxic stress in the liver in the absence of severe metabolic distress or tissue damage. The hypoxic stimulus was sufficient to activate the HIF-1 signalling pathway and up-regulate hepatoprotective genes. Pre-conditioning the liver with hypoxia was able to delay the onset of Fas-mediated apoptosis and prolong animal survival. CONCLUSIONS: Our data reveal that hepatic cells can sense and respond to a decrease in tissue oxygenation, and furthermore, that activation of hypoxia-inducible signalling pathways function in part to promote liver cell survival.