61 resultados para Caspase-3
Resumo:
Scutellaria baicalensis (SB) and SB-derived polyphenols possess anti-proliferative activities in several cancers, including pancreatic cancer (PaCa). However, the precise molecular mechanisms have not been fully defined. SB extract and SB-derived polyphenols (wogonin, baicalin, and baicalein) were used to determine their anti-proliferative mechanisms. Baicalein significantly inhibited the proliferation of PaCa cell lines in a dose-dependent manner, whereas wogonin and baicalin exhibited a much less robust effect. Treatment with baicalein induced apoptosis with release of cytochrome c from mitochondria, and activation of caspase-3 and -7 and PARP. The general caspase inhibitor zVAD-fmk reversed baicalein-induced apoptosis, indicating a caspase-dependent mechanism. Baicalein decreased expression of Mcl-1, an anti-apoptotic member of the Bcl-2 protein family, presumably through a transcriptional mechanism. Genetic knockdown of Mcl-1 resulted in marked induction of apoptosis. The effect of baicalein on apoptosis was significantly attenuated by Mcl-1 over-expression, suggesting a critical role of Mcl-1 in this process. Our results provide evidence that baicalein induces apoptosis in pancreatic cancer cells through down-regulation of the anti-apoptotic Mcl-1 protein.
Resumo:
In this study, the hypothesis was tested that the size of gastrointestinal tract (GIT) mucosal components and rates of epithelial cell proliferation and apoptosis change with increasing age. The aims were to quantitatively examine GIT histomorphology and to determine mucosal epithelial cell proliferation and apoptosis rates in neonatal (<48 h old) and adult (8 to 11.5 yr old) dogs. Morphometrical analyses were performed by light microscopy with a video-based, computer-linked system. Cell proliferation and apoptosis of the GIT epithelium were evaluated by counting the number of Ki-67 and caspase-3-positive cells, respectively, using immunohistochemical methods. Thickness of mucosal, glandular, subglandular, submucosal and muscular layers, crypt depths, villus heights, and villus widths were consistently greater (P < 0.05 to P < 0.001), whereas villus height/crypt depth ratios were smaller (P < 0.001) in adult than in neonatal dogs. The number of Ki-67-positive cells in stomach, small intestine, and colon crypts, but not in villi, was consistently greater (P < 0.01) in neonatal than in adult dogs. In contrast, the number of caspase-3-positive cells in crypts of the stomach, small intestine, and colon and in villi was not significantly influenced by age. In conclusion, canine GIT mucosal morphology and epithelial cell proliferation rates, but not apoptosis rates, change markedly from birth until adulthood is reached.
Resumo:
During sepsis, liver dysfunction is common, and failure of mitochondria to effectively couple oxygen consumption with energy production has been described. In addition to sepsis, pharmacological agents used to treat septic patients may contribute to mitochondrial dysfunction. This study addressed the hypothesis that remifentanil interacts with hepatic mitochondrial oxygen consumption. The human hepatoma cell line HepG2 and their isolated mitochondria were exposed to remifentanil, with or without further exposure to tumor necrosis factor-α (TNF-α). Mitochondrial oxygen consumption was measured by high-resolution respirometry, Caspase-3 protein levels by Western blotting, and cytokine levels by ELISA. Inhibitory κBα (IκBα) phosphorylation, measurement of the cellular ATP content and mitochondrial membrane potential in intact cells were analysed using commercial ELISA kits. Maximal cellular respiration increased after one hour of incubation with remifentanil, and phosphorylation of IκBα occurred, denoting stimulation of nuclear factor κB (NF-κB). The effect on cellular respiration was not present at 2, 4, 8 or 16 hours of incubation. Remifentanil increased the isolated mitochondrial respiratory control ratio of complex-I-dependent respiration without interfering with maximal respiration. Preincubation with the opioid receptor antagonist naloxone prevented a remifentanil-induced increase in cellular respiration. Remifentanil at 10× higher concentrations than therapeutic reduced mitochondrial membrane potential and ATP content without uncoupling oxygen consumption and basal respiration levels. TNF-α exposure reduced respiration of complex-I, -II and -IV, an effect which was prevented by prior remifentanil incubation. Furthermore, prior remifentanil incubation prevented TNF-α-induced IL-6 release of HepG2 cells, and attenuated fragmentation of pro-caspase-3 into cleaved active caspase 3 (an early marker of apoptosis). Our data suggest that remifentanil increases cellular respiration of human hepatocytes and prevents TNF-α-induced mitochondrial dysfunction. The results were not explained by uncoupling of mitochondrial respiration.
Resumo:
One of the possible initiating factors in canine cranial cruciate ligament (CCL) rupture could be an abnormal pattern of ligament cell death. This study compared apoptotic cell death in sections of ruptured CCLs and normal controls, and examined nitric oxide (NO) production in joint tissues and correlated this to apoptosis. CCLs and cartilage from the lateral femoral condyle were harvested from 10 healthy dogs and 15 dogs with CCL rupture and ligaments were further processed to detect cleaved caspase-3 and to determine supernatant NO production in explant cultures. Apoptotic activity was greater in ruptured ligaments compared to controls. NO in ligaments showed a moderate but significant positive correlation with caspase-positive cells. The results suggest that increased apoptosis has a role in CCL rupture and that apoptosis may be influenced by local NO production.
Resumo:
The armadillo family protein plakoglobin (Pg) is a well-characterized component of anchoring junctions, where it functions to mediate cell-cell adhesion and maintain epithelial tissue integrity. Although its closest homolog beta-catenin acts in the Wnt signaling pathway to dictate cell fate and promote proliferation and survival, the role of Pg in these processes is not well understood. Here, we investigate how Pg affects the survival of mouse keratinocytes by challenging both Pg-null cells and their heterozygote counterparts with apoptotic stimuli. Our results indicate that Pg deletion protects keratinocytes from apoptosis, with null cells exhibiting delayed mitochondrial cytochrome c release and activation of caspase-3. Pg-null keratinocytes also exhibit increased messenger RNA and protein levels of the anti-apoptotic molecule Bcl-X(L) compared to heterozygote controls. Importantly, reintroduction of Pg into the null cells shifts their phenotype towards that of the Pg+/- keratinocytes, providing further evidence that Pg plays a direct role in regulating cell survival. Taken together, our results suggest that in addition to its adhesive role in epithelia, Pg may also function in contrast to the pro-survival tendencies of beta-catenin, to potentiate death in cells damaged by apoptotic stimuli, perhaps limiting the potential for the propagation of mutations and cellular transformation.Journal of Investigative Dermatology advance online publication, 16 November 2006; doi:10.1038/sj.jid.5700615.
Resumo:
The exact molecular mechanisms leading to delayed apoptosis, a phenomenon frequently observed in eosinophil inflammatory responses, remain largely unknown. Here, we show that cultured eosinophils purified from blood of hypereosinophilic syndrome (HES) patients exhibit delayed spontaneous death and relative resistance towards ceramide- but not CD95-mediated death. The subsequent investigation of members of the inhibitor of apoptosis (IAP) family revealed that HES but not normal eosinophils expressed high levels of cellular IAP-2 (cIAP-2) and survivin. The eosinophil hematopoietins IL-3, IL-5, and GM-CSF increased the expression of cIAP-2 and survivin in normal eosinophils in vitro. In the blood of HES patients, we observed increased concentrations of IL-3 and/or IL-5, suggesting that these cytokines are, at least partially, responsible for the elevated levels of cIAP-2 and survivin in the eosinophils of these patients. Utilizing a cell-free system in which caspase-3 was activated in eosinophil cytosolic extracts by addition of cytochrome c and immunodepletion of cIAP-2 or survivin resulted in accelerated caspase activation. These data suggest that some members of the IAP family including survivin are regulated by survival cytokines and inhibit the caspase cascade in HES eosinophils. The cytokine-dependent mechanism of delayed eosinophil apoptosis described here may also apply to other eosinophilic diseases.
Resumo:
BACKGROUND: There are inherent conceptual problems in investigating the pharmacodynamics of cancer drugs in vivo. One of the few possible approaches is serial biopsies in patients. However, this type of research is severely limited by methodological and ethical constraints. MATERIALS AND METHODS: A modified 3-dimensional tissue culture technique was used to culture human tumor samples, which had been collected during routine cancer operations. Twenty tumor samples of patients with non-small cell lung cancer (NSCLC) were cultured ex vivo for 120 h and treated with mitomycin C, taxotere and cisplatin. The cytotoxic activity of the anticancer agents was quantified by assessing the metabolic activity of treated tumor cultures and various assays of apoptosis and gene expression were performed. RESULTS: The proliferative activity of the tissue was maintained in culture as assessed by Ki-67 staining. Mitomycin C, cisplatin and taxotere reduced the metabolic activity of the tumor tissue cultures by 51%, 29% and 20%, respectively, at 120 h. The decrease in metabolic activity corresponded to the induction of apoptosis as demonstrated by the typical morphological changes, such as chromatin condensation and nuclear fragmentation. In addition, activated caspase-3 could be verified in apoptotic cells by immunohistochemistry. To verify functional aspects of apoptosis, the induction of chemotherapy-induced cell death was inhibited with the caspase inhibitor z-VAD.fmk. RNA was extracted from the tissue cultures after 120 h of ex vivo drug treatment and was of sufficient quality to allow quantitative PCR. CONCLUSION: The 3-dimensional ex vivo culture technique is a useful method to assess the molecular effects of pharmacological interventions in human cancer samples in vitro. This culture technique could become an important tool for drug development and for the prediction of in vivo drug efficacy.
Resumo:
Mast cells (MC), supposedly long-lived cells, play a key role in allergy and are important contributors to other inflammatory conditions in which they undergo hyperplasia. In humans, stem cell factor (SCF) is the main regulator of MC growth, differentiation, and survival. Although human MC numbers may also be regulated by apoptotic cell death, there have been no reports concerning the role of the extrinsic apoptotic pathway mediated by death receptors in these cells. We examined expression and function of death receptors for Fas ligand and TRAIL in human MC. Although the MC leukemia cell line HMC-1 and human lung-derived MC expressed both Fas and TRAIL-R, MC lines derived from cord blood (CBMC) expressed only TRAIL-R. Activation of TRAIL-R resulted in caspase 3-dependent apoptosis of CBMC and HMC-1. IgE-dependent activation of CBMC increased their susceptibility to TRAIL-mediated apoptosis. Results suggest that TRAIL-mediated apoptosis may be a mechanism of regulating MC survival in vivo and, potentially, for down-regulating MC hyperplasia in pathologic conditions.
Resumo:
OBJECTIVE: To determine whether a specifically designed bispecific (Bcl-2/Bcl-xL) antisense oligonucleotide (ASO) induces apoptosis and enhances chemosensitivity in human prostate cancer LNCaP cells, as Bcl-2 and Bcl-xL are both anti-apoptotic genes associated with treatment resistance and tumour progression in many malignancies, including prostate cancer. MATERIALS AND METHODS: Inhibition of Bcl-2 and Bcl-xL expression by the bispecific ASO was evaluated using real-time reverse transcription-polymerase chain reaction and Western blotting, while growth inhibition and induction of apoptosis were analysed by a crystal violet assay, flow cytometry and Western blotting of apoptosis-relevant proteins. The effect of combined treatment with bispecific ASO and chemotherapy or small-interference RNA (siRNA) targeting the clusterin gene was also investigated. RESULTS: Bispecific ASO reduced Bcl-2 and Bcl-xL expression in LNCaP cells in a dose-dependent manner. There was cell growth inhibition, increases in the sub-G0-G1 fraction, and cleavage of caspase-3 and poly(ADP-Ribose) polymerase proteins in LNCaP cells after bispecific ASO treatment. Interestingly, Bcl-2/Bcl-xL bispecific ASO treatment also resulted in the down-regulation of Mcl-1 and up-regulation of Bax. The sensitivity of LNCaP cells to mitoxantrone, docetaxel or paclitaxel was significantly increased, reducing the 50% inhibitory concentration by 45%, 80% or 90%, respectively. Furthermore, the apoptotic induction by Bcl-2/Bcl-xL bispecific ASO was synergistically enhanced by siRNA-mediated inhibition of clusterin, a cytoprotective chaperone that interacts with and inhibits activated Bax. CONCLUSIONS: These findings support the concept of the targeted suppression of Bcl-2 anti-apoptotic family members using multitarget inhibition strategies for prostate cancer, through the effective induction of apoptosis.
Resumo:
BACKGROUND/AIMS: We investigated the molecular response of a non-ischemic hypoxic stress in the liver, in particular, to distinguish its hepatoprotective potential. METHODS: The livers of mice were subjected to non-ischemic hypoxia by clamping the hepatic-artery (HA) for 2h while maintaining portal circulation. Hypoxia was defined by a decrease in oxygen saturation, the activation of hypoxia-inducible factor (HIF)-1 and the mRNA up-regulation of responsive genes. To demonstrate that the molecular response to hypoxia may in part be hepatoprotective, pre-conditioned animals were injected with an antibody against Fas (Jo2) to induce acute liver failure. Hepatocyte apoptosis was monitored by caspase-3 activity, cleavage of lamin A and animal survival. RESULTS: Clamping the HA induced a hypoxic stress in the liver in the absence of severe metabolic distress or tissue damage. The hypoxic stimulus was sufficient to activate the HIF-1 signalling pathway and up-regulate hepatoprotective genes. Pre-conditioning the liver with hypoxia was able to delay the onset of Fas-mediated apoptosis and prolong animal survival. CONCLUSIONS: Our data reveal that hepatic cells can sense and respond to a decrease in tissue oxygenation, and furthermore, that activation of hypoxia-inducible signalling pathways function in part to promote liver cell survival.
Resumo:
OBJECTIVE: To explore the role of pro-apoptotic signals following tissue injury and how these may promote a progression of further cell death. METHODS: Laser treated porcine articular cartilage disks were maintained in culture media. The collected media at various time periods (3, 6, 9, 12, 24 and 48 h), was called treated conditioned media (TCM). Non-laser treated cartilage disks were used to create control conditioned media (CCM). Each disk was subsequently maintained for 28 days and used in confocal microscopic assessment to document the progression of the damaged area. Isolated porcine chondrocytes were cultured in monolayer, and were exposed to TCM, CCM or normal culture medium (NM). As a positive inducer of apoptosis, the monolayer cells were exposed to UV radiation for 10 min and cultured in NM. Following 24 h exposure, the cells were harvested and stained with the appropriate combination of fluorescent dyes and processed via flow cytometry. RESULTS: All cultured cells exposed to TCM displayed a caspase-3 positive subpopulation, a loss of CMXRos, and with a reduced or lost NO signal. CCM exposure signals were comparable to the NM treatments with all having retained CMXRos, NO and without evidence of caspase-3 activity. UV treatment also induced a reduction in NO, but both CMXRos and caspase-3 positive, representing an earlier stage of apoptosis and suggesting that the mode of cell death via UV and TCM exposure are via different processes. The investigation of a dose (100%, 50%, 25% and 12.5%) and time (0.5, 1, 3, 9, 12 h) response to TCM exhibited that all treatments observed an increase in caspase-3 positive cells and a reduction in NO and CMXRos. CONCLUSION: The usefulness of FCM can be used in the study of cell viability and apoptosis. Such a system may be useful in the study of mechanisms of disease such as osteoarthritis, thus may be of practical use for the pharmaceutical industry for screening associated drugs.
Resumo:
The activation of NO/cGMP pathways can induce pro-apoptotic pathways in cardiomyocytes although only a small number of cardiomyocytes fulfill the criteria of apoptosis. The same pathways reduce the contractile performance of cardiomyocytes. In the present study, we tested the hypothesis that exposure of cells to NO/cGMP for 24 h decrease their contractile performance due to an activation of pro-apoptotic pathways. Experiments were performed on freshly isolated and cultured adult ventricular rat cardiomyocytes. Cells were incubated with 8-bromo-cyclo-GMP (100 nmol/L-1 micromol/L), the NO donor SNAP (1 nmol/L-100 micromol/L), or the guanylyl cyclase activator YC-1 (3 micromol/L). Cell shortening, contraction and relaxation velocities, and diastolic cell lengths were determined at beating frequencies of 0.5, 1, and 2 Hz 24 h later. The activation of pro-apoptotic pathways was determined by staining of cardiomyocytes with an antibody directed against active caspase-3 and quantification of the number of apoptotic cells (annexin staining). Caspase-3 activation and an increase in the number of apoptotic cells was observed, but only at the highest concentrations tested (8-bromo-cyclo-GMP: 1-10 mmol/L; SNAP: 1-100 micromol/L). At these concentrations, none of the drugs decreased the mean cell shortening of cardiomyocytes. However, at concentrations lower than those required for induction of apoptotic cell death, the diastolic cell lengths and sarcomere lengths increased but cell shortening decreased. In conclusion, low concentrations of either NO or cGMP cause a desensitization of myofibrils, as indicated by elongated cell shapes, increased sarcomere lengths and reduced load-free cell shortening. High concentrations of NO/cGMP induce caspase-3 activation and increase the number of cells fulfilling the criteria of apoptotic cell death but did not impair cell function. Therefore, induction of apoptotic cell death per se seems not to contribute to the loss of contractile efficiency on the cellular level.
Resumo:
Bacterial meningitis due to Streptococcus pneumoniae is associated with an significant mortality rate and persisting neurologic sequelae including sensory-motor deficits, seizures, and impairments of learning and memory. The histomorphological correlate of these sequelae is a pattern of brain damage characterized by necrotic tissue damage in the cerebral cortex and apoptosis of neurons in the hippocampal dentate gyrus. Different animal models of pneumococcal meningitis have been developed to study the pathogenesis of the disease. To date, the infant rat model is unique in mimicking both forms of brain damage documented in the human disease. In the present study, we established an infant mouse model of pneumococcal meningitis. Eleven-days-old C57BL/6 (n = 299), CD1 (n = 42) and BALB/c (n = 14) mice were infected by intracisternal injection of live Streptococcus pneumoniae. Sixteen hours after infection, all mice developed meningitis as documented by positive bacterial cultures of the cerebrospinal fluid. Sixty percent of infected C57BL/6 mice survived more than 40 h after infection (50% of CD1, 0% of BALB/c). Histological evaluations of brain sections revealed apoptosis in the dentate gyrus of the hippocampus in 27% of infected C57BL/6 and in 5% of infected CD1 mice. Apoptosis was confirmed by immunoassaying for active caspase-3 and by TUNEL staining. Other forms of brain damage were found exclusively in C57BL/6, i.e. caspase-3 independent (pyknotic) cell death in the dentate gyrus in 2% and cortical damage in 11% of infected mice. This model may prove useful for studies on the pathogenesis of brain injury in childhood bacterial meningitis.
Resumo:
Pneumococcal meningitis is associated with caspase 3-dependent apoptosis of recently post-mitotic immature neurons in the dentate gyrus of the hippocampus. The death of these cells is implicated in the learning and memory deficits in patients surviving the disease. The stress-activated protein kinase c-Jun N-terminal kinase (JNK) has been shown to be an important mediator of caspase 3-dependent neuronal apoptosis. However, whether JNK is involved in hippocampal apoptosis caused by pneumococcal meningitis has so far not been investigated. Here we show in a neonatal rat model of pneumococcal meningitis that JNK3 but not JNK1 or JNK2 is activated in the hippocampus during the acute phase of infection. At the cellular level, JNK3 activation was accompanied in the dentate gyrus by markedly increased phosphorylation of its major downstream target c-Jun in early immature (Hu-positive) neurons, but not in migrating (doublecortin-positive) neurons, the cells that do undergo apoptosis. These findings suggested that JNK may not be involved in pneumococcal meningitis-induced hippocampal apoptosis. Indeed, although intracerebroventricular administration of D-JNKI-1 or AS601245 (two highly specific JNK inhibitors) inhibited c-Jun phosphorylation and protein expression in the hippocampus, hippocampal apoptosis was unaffected. Collectively, these results demonstrate that JNK does not mediate hippocampal apoptosis in pneumococcal meningitis, and that JNK may be involved in processes unrelated to apoptosis in this disease.
Resumo:
ABSTRACT: INTRODUCTION: In transgenic animal models of sepsis, members of the Bcl-2-family of proteins regulate lymphocyte apoptosis and survival of sepsis. This study investigates the gene regulation of pro- and anti-apoptotic members of the Bcl-2-family of proteins in patients with early stage severe sepsis. METHODS: In this prospective case-control study patients were recruited from three intensive care units in a university hospital. Sixteen patients were enrolled as soon as they fulfilled the criteria of severe sepsis. Ten critically ill but non-septic patients and eleven healthy volunteers served as controls. Blood samples were immediately obtained at inclusion. To confirm the presence of accelerated apoptosis in the patient groups, caspase-3 activation and phosphatidylserine (PS) externalization in CD4+, CD8+ and CD19+ lymphocyte subsets were assessed by flow cytometry. Specific mRNA's of Bcl-2 family members were quantified from whole blood by real-time polymerase chain reaction. To test for statistical significance, Kruskal-Wallis testing with Dunn's multiple comparison test for post hoc testing was performed. RESULTS: In all lymphocyte populations caspase-3 (p<0.05) was activated, which was reflected in an increased PS externalization (p<0.05). Accordingly, lymphocyte counts were decreased in early severe sepsis. In CD4+ T-cells (p<005) and in B-cells (p<0.001) the Bcl-2 protein was decreased in severe sepsis. Gene expression of the BH3-only Bim was massively upregulated as compared to critically ill patients (p<0.001) and 51.6 fold as compared to healthy controls (p<0.05). Bid was increased 12.9 fold compared to critically ill (p<0.001). In the group of the mitochondrial apoptosis-inducers, Bak was upregulated 5.6 fold, while the expression of Bax showed no significant variations. By contrast, the pro-survival members Bcl-2 and Bcl-xl were both downregulated in severe sepsis (p<0.001, p<0.05). CONCLUSIONS: In early severe sepsis a gene expression pattern with induction of the pro-apoptotic Bcl-2 family members Bim, Bid and Bak and a downregulation of the anti-apoptotic Bcl-2 and Bcl-xl was observed in peripheral blood. This constellation may affect cellular susceptibility to apoptosis and complex immune dysfunction in sepsis.