186 resultados para Capacitation porcine
Resumo:
BACKGROUND: Porcine IGF2 and the H19 genes are imprinted. The IGF2 is paternally expressed, while the H19 gene is maternally expressed. Extensive studies in mice established a boundary model indicating that the H19 differentially methylated domain (DMD) controls, upon binding with the CTCF protein, reciprocal imprinting of the IGF2 and the H19 genes. IGF2 transcription is tissue and development specific involving the use of 4 promoters. In the liver of adult Large White boars IGF2 is expressed from both parental alleles, whereas in skeletal muscle and kidney tissues we observed variable relaxation of IGF2 imprinting. We hypothesized that IGF2 expression from both paternal alleles and relaxation of IGF2 imprinting is reflected in differences in DNA methylation patterns at the H19 DMD and IGF2 differentially methylated regions 1 and 2 (DMR1 and DMR2). RESULTS: Bisulfite sequencing analysis did not show any differences in DNA methylation at the three porcine CTCF binding sites in the H19 DMD between liver, muscle and kidney tissues of adult pigs. A DNA methylation analysis using methyl-sensitive restriction endonuclease SacII and 'hot-stop' PCR gave consistent results with those from the bisulfite sequencing analysis. We found that porcine H19 DMD is distinctly differentially methylated, at least for the region formally confirmed by two SNPs, in liver, skeletal muscle and kidney of foetal, newborn and adult pigs, independent of the combined imprinting status of all IGF2 expressed transcripts. DNA methylation at CpG sites in DMR1 of foetal liver was significantly lower than in the adult liver due to the presence of hypomethylated molecules. An allele specific analysis was performed for IGF2 DMR2 using a SNP in the IGF2 3'-UTR. The maternal IGF2 DMR2 of foetal and newborn liver revealed a higher DNA methylation content compared to the respective paternal allele. CONCLUSIONS: Our results indicate that the IGF2 imprinting status is transcript-specific. Biallelic IGF2 expression in adult porcine liver and relaxation of IGF2 imprinting in porcine muscle were a common feature. These results were consistent with the IGF2 promoter P1 usage in adult liver and IGF2 promoter P2, P3 and P4 usages in muscle. The results showed further that bialellic IGF2 expression in liver and relaxation of imprinting in muscle and kidney were not associated with DNA methylation variation at and around at least one CTCF binding site in H19 DMD. The imprinting status in adult liver, muscle and kidney tissues were also not reflected in the methylation patterns of IGF2 DMRs 1 and 2.
Resumo:
Clostridium perfringens type C causes fatal necrotizing enteritis in different mammalian hosts, most commonly in newborn piglets. Human cases are rare, but the disease, also called pigbel, was endemic in the Highlands of Papua New Guinea. Lesions in piglets and humans are very similar and characterized by segmental necro-hemorrhagic enteritis in acute cases and fibrino-necrotizing enteritis in subacute cases. Histologically, deep mucosal necrosis accompanied by vascular thrombosis and necrosis was consistently reported in naturally affected pigs and humans. This suggests common pathogenetic mechanisms. Previous in vitro studies using primary porcine aortic endothelial cells suggested that beta-toxin (CPB) induced endothelial damage contributes to the pathogenesis of C. perfringens type C enteritis in pigs. In the present study we investigated toxic effects of CPB on cultured primary human macro- and microvascular endothelial cells. In vitro, these cells were highly sensitive to CPB and reacted with similar cytopathic and cytotoxic effects as porcine endothelial cells. Our results indicate that porcine and human cell culture based in vitro models represent valuable tools to investigate the pathogenesis of this bacterial disease in animals and humans.
Resumo:
Clostridium perfringens type C isolates cause fatal, segmental necro-hemorrhagic enteritis in animals and humans. Typically, acute intestinal lesions result from extensive mucosal necrosis and hemorrhage in the proximal jejunum. These lesions are frequently accompanied by microvascular thrombosis in affected intestinal segments. In previous studies we demonstrated that there is endothelial localization of C. perfringens type C beta-toxin (CPB) in acute lesions of necrotizing enteritis. This led us to hypothesize that CPB contributes to vascular necrosis by directly damaging endothelial cells. By performing additional immunohistochemical studies using spontaneously diseased piglets, we confirmed that CPB binds to the endothelial lining of vessels showing early signs of thrombosis. To investigate whether CPB can disrupt the endothelium, we exposed primary porcine aortic endothelial cells to C. perfringens type C culture supernatants and recombinant CPB. Both treatments rapidly induced disruption of the actin cytoskeleton, cell border retraction, and cell shrinkage, leading to destruction of the endothelial monolayer in vitro. These effects were followed by cell death. Cytopathic and cytotoxic effects were inhibited by neutralization of CPB. Taken together, our results suggest that CPB-induced disruption of endothelial cells may contribute to the pathogenesis of C. perfringens type C enteritis.
Resumo:
Transferrin (TF)-mediated provision of iron is essential for a productive infection by many bacterial pathogens, and iron-depletion of TF is a first line defence against bacterial infections. Therefore, the transferrin (TF) gene can be considered a candidate gene for disease resistance. We obtained the complete DNA sequence of the porcine TF gene, which spans 40 kb and contains 17 exons. We identified polymorphisms on a panel of 10 different pig breeds. Comparative intra- and interbreed sequence analysis revealed 62 polymorphisms in the TF gene including one microsatellite. Ten polymorphisms were located in the coding sequence of the TF gene. Four SNPs (c.902A>T, c.980G>A, c.1417A>G, c.1810A>C) were predicted to cause amino acid exchanges (p.Lys301Ile, p.Arg327Lys, p.Lys473Glu, p.Asn604His). We performed association analyses using six selected TF markers and 116 pigs experimentally infected with Actinobacillus pleuropneumoniae serotype 7. The analysis showed breed-specific TF allele frequencies. In German Landrace, we found evidence for a possible association of the severity of A. pleuropneumoniae infection with TF genotypes.
Resumo:
Drip loss is the loss of fluid from a piece of meat without mechanical force and represents an important meat quality trait. Previous work revealed a quantitative trait locus (QTL) for drip loss in pork in an experimental Duroc x Pietrain (DUPI) F2 family on SSC 5. Based on functional data indicating their possible involvement in water holding capacity and their expression in skeletal muscle, we selected five positional candidates (ACO2, ADSL, CBY1, KCNJ4, PLA2AG6) out of 130 predicted genes in the QTL interval for further analysis. We performed a mutation analysis of all coding exons and discovered 204 polymorphisms. We genotyped 39 single nucleotide polymorphisms (SNPs) in 192 Pietrain pigs with extreme drip loss phenotypes and detected a possible association with drip loss for one non-coding SNP in the ADSL gene (ss107793818, p(raw) = 0.021). Correspondingly, ADSL diplotypes were associated with drip loss and pH1 of M. longissimus dorsi. However, after correction for multiple testing, none of the tested SNPs were significantly associated with drip loss. One possible explanation for these results is that one of the QTL-alleles from the experimental DUPI family may be fixed or nearly fixed in the tested Pietrain population.
Resumo:
The aim of this study was to evaluate microdialysis of the rectus abdominis muscle (RAM) for early detection of subclinical organ dysfunction in a porcine model of critical intra-abdominal hypertension (IAH). Microdialysis catheters for analyses of lactate, pyruvate, and glycerol levels were placed in cervical muscles (control), gastric and jejunal wall, liver, kidney, and RAM of 30 anesthetized mechanically ventilated pigs. Catheters for venous lactate and interleukin 6 samples were placed in the jugular, portal, and femoral vein. Intra-abdominal pressure (IAP) was increased to 20 mmHg (IAH20 group, n = 10) and 30 mmHg (IAH30, n = 10) for 6 h by controlled CO2 insufflation, whereas sham animals (n = 10) exhibited a physiological IAP. In contrast to 20 mmHg, an IAH of 30 mmHg induced pathophysiological alterations consistent with an abdominal compartment syndrome. Microdialysis showed significant increase in the lactate/pyruvate ratio in the RAM of the IAH20 group after 6 h. In the IAH30 group, the strongest increase in lactate/pyruvate ratio was detected in the RAM and less pronounced in the liver and gastric wall. Glycerol increased in the RAM only. After 6 h, there was a significant increase in venous interleukin 6 of the IAH30 group compared with baseline. Venous lactate was increased compared with baseline and shams in the femoral vein of the IAH30 group only. Intra-abdominal pressure-induced ischemic metabolic changes are detected more rapidly and pronounced by microdialysis of the RAM when compared with intra-abdominal organs. Thus, the RAM represents an important and easily accessible site for the early detection of subclinical organ dysfunction during critical IAH.
Resumo:
A broad spectrum of synthetic agents is available for the treatment of overactive bladder. Anti-cholinergic drugs show a poor compliance due to side effects. There is an increasing use of plant extracts in medicine. We have therefore investigated the inhibitory effects of leaf press juice from Bryophyllum pinnatum (Lam.) Oken (Kalanchoe pinnata L.) on bladder strips and compared the effects to that of oxybutynin.
Resumo:
Revascularization of amputated extremities after prolonged ischemia is complicated by reperfusion injury. We assessed ischemia/reperfusion (I/R) injury of porcine extremities after prolonged preservation using extracorporeal circulation (ECC).
Resumo:
Recently performed vascularized composite tissue allotransplantations (CTAs) stimulate the ongoing research in the area of whole-limb transplantation. A reliable in vivo animal model is required for investigations in vascularized whole-limb CTA. The model should allow in vivo assessment in whole-limb preservation, allograft and xenograft response, and host immunomodulation. The goal of this study is to describe and evaluate the in vivo feasibility and reproducibility of a whole-limb porcine model as a basis for future research in this field.
Resumo:
A porcine BAC clone harboring the tightly linked IFNAR1 and IFNGR2 genes was identified by comparative analysis of the publicly available porcine BAC end sequences. The complete 168,835 bp insert sequence of this clone was determined. Sequence comparisons of the genomic sequence with EST sequences from public databases were performed and allowed a detailed annotation of the IFNAR1 and IFNGR2 genes. The analyzed genes showed a conserved genomic organization with their known mammalian orthologs, however the sequence conservation of these genes across species was relatively low. In addition to the IFNAR1 and IFNGR2 genes, which were completely sequenced, the analyzed BAC clone also contained parts of an orphan gene encoding a putative transmembrane protein (TMEM50B). In contrast to the IFNAR1 and IFNGR2 genes the sequence conservation of the TMEM50B gene across different mammalian species was extremely high.
Resumo:
The human gene deleted in malignant brain tumors 1 (DMBT1) is considered to play a role in tumorigenesis and pathogen defense. It encodes a protein with multiple scavenger receptor cysteine-rich (SRCR) domains, which are involved in recognition and binding of a broad spectrum of bacterial pathogens. The SRCR domains are encoded by highly homologous repetitive exons, whose number in humans may vary from 8 to 13 due to genetic polymorphism. Here, we characterized the porcine DMBT1 gene on the mRNA and genomic level. We assembled a 4.5 kb porcine DMBT1 cDNA sequence from RT-PCR amplified seminal vesicle RNA. The porcine DMBT1 cDNA contains an open reading frame of 4050 nt. The transcript gives rise to a putative polypeptide of 1349 amino acids with a calculated mass of 147.9 kDa. Compared to human DMBT1, it contains only four N-terminal SRCR domains. Northern blotting revealed transcripts of approximately 4.7 kb in size in the tissues analyzed. Analysis of ESTs suggested the existence of secreted and transmembrane variants. The porcine DMBT1 gene spans about 54 kb on chromosome 14q28-q29. In contrast to the characterized cDNA, the genomic BAC clone only contained 3 exons coding for N-terminal SRCR domains. In different mammalian DMBT1 orthologs large interspecific differences in the number of SRCR exons and utilization of the transmembrane exon exist. Our data suggest that the porcine DMBT1 gene may share with the human DMBT1 gene additional intraspecific variations in the number of SRCR-coding exons.
Resumo:
The gene for agouti signaling protein (ASIP) is centrally involved in the expression of coat color traits in animals. The Mangalitza pig breed is characterized by a black-and-tan phenotype with black dorsal pigmentation and yellow or white ventral pigmentation. We investigated a Mangalitza x Piétrain cross and observed a coat color segregation pattern in the F2 generation that can be explained by virtue of two alleles at the MC1R locus and two alleles at the ASIP locus. Complete linkage of the black-and-tan phenotype to microsatellite alleles at the ASIP locus on SSC 17q21 was observed. Corroborated by the knowledge of similar mouse coat color mutants, it seems therefore conceivable that the black-and-tan pigmentation of Mangalitza pigs is caused by an ASIP allele a(t), which is recessive to the wild-type allele A. Toward positional cloning of the a(t) mutation, a 200-kb genomic BAC/PAC contig of this chromosomal region has been constructed and subsequently sequenced. Full-length ASIP cDNAs obtained by RACE differed in their 5' untranslated regions, whereas they shared a common open reading frame. Comparative sequencing of all ASIP exons and ASIP cDNAs between Mangalitza and Piétrain pigs did not reveal any differences associated with the coat color phenotype. Relative qRT-PCR analyses showed different dorsoventral skin expression intensities of the five ASIP transcripts in black-and-tan Mangalitza. The a(t) mutation is therefore probably a regulatory ASIP mutation that alters its dorsoventral expression pattern.
Resumo:
In this study, 231 strains of Yersinia enterocolitica, 25 strains of Y. intermedia, and 10 strains of Y. bercovieri from human and porcine sources (including reference strains) were analyzed using amplified fragment length polymorphism (AFLP), a whole-genome fingerprinting method for subtyping bacterial isolates. AFLP typing distinguished the different Yersinia species examined. Representatives of Y. enterocolitica biotypes 1A, 1B, 2, 3, and 4 belonged to biotype-related AFLP clusters and were clearly distinguished from each other. Y. enterocolitica biotypes 2, 3, and 4 appeared to be more closely related to each other (83% similarity) than to biotypes 1A (11%) and 1B (47%). Biotype 1A strains exhibited the greatest genetic heterogeneity of the biotypes studied. The biotype 1A genotypes were distributed among four major clusters, each containing strains from both human and porcine sources, confirming the zoonotic potential of this organism. The AFLP technique is a valuable genotypic method for identification and typing of Y. enterocolitica and other Yersinia spp.
Resumo:
BACKGROUND: Cyclic recruitment during mechanical ventilation contributes to ventilator associated lung injury. Two different pathomechanisms in acute respiratory distress syndrome (ARDS) are currently discussed: alveolar collapse vs persistent flooding of small airways and alveoli. We compare two different ARDS animal models by computed tomography (CT) to describe different recruitment and derecruitment mechanisms at different airway pressures: (i) lavage-ARDS, favouring alveolar collapse by surfactant depletion; and (ii) oleic acid ARDS, favouring alveolar flooding by capillary leakage. METHODS: In 12 pigs [25 (1) kg], ARDS was randomly induced, either by saline lung lavage or oleic acid (OA) injection, and 3 animals served as controls. A respiratory breathhold manoeuvre without spontaneous breathing at different continuous positive airway pressure (CPAP) was applied in random order (CPAP levels of 5, 10, 15, 30, 35 and 50 cm H(2)O) and spiral-CT scans of the total lung were acquired at each CPAP level (slice thickness=1 mm). In each spiral-CT the volume of total lung parenchyma, tissue, gas, non-aerated, well-aerated, poorly aerated, and over-aerated lung was calculated. RESULTS: In both ARDS models non-aerated lung volume decreased significantly from CPAP 5 to CPAP 50 [oleic acid lung injury (OAI): 346.9 (80.1) to 96.4 (48.8) ml, P<0.001; lavage-ARDS: 245 17.6) to 42.7 (4.8) ml, P<0.001]. In lavage-ARDS poorly aerated lung volume decreased at higher CPAP levels [232 (45.2) at CPAP 10 to 84 (19.4) ml at CPAP 50, P<0.001] whereas in OAI poorly aerated lung volume did not vary at different airway pressures. CONCLUSIONS: In both ARDS models well-aerated and non-aerated lung volume respond to different CPAP levels in a comparable fashion: Thus, a cyclical alveolar collapse seems to be part of the derecruitment process also in the OA-ARDS. In OA-ARDS, the increase in poorly aerated lung volume reflects the specific initial lesion, that is capillary leakage with interstitial and alveolar oedema.
Resumo:
The DNAL4 (dynein, axonemal, light polypeptide 4) gene encodes a light chain of dynein. Dyneins are motor proteins that contribute to axonal transport. Cloning and characterization of the porcine DNAL4 revealed a conserved organization with respect to the human ortholog. The porcine DNAL4 gene consists of 4 exons and codes for a peptide of 105 amino acids. The porcine DNAL4 gene is located on SSC5p15. Analysis of the naturally occurring variation of the DNAL4 gene in pigs from the Piétrain und Duroc breeds revealed five SNPs in non-coding regions of the gene.