16 resultados para Camera Obscura
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (9)
- Aquatic Commons (24)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (10)
- Aston University Research Archive (8)
- Biblioteca Digital da Câmara dos Deputados (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (19)
- Blue Tiger Commons - Lincoln University - USA (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Boston University Digital Common (7)
- CaltechTHESIS (11)
- Cambridge University Engineering Department Publications Database (81)
- CentAUR: Central Archive University of Reading - UK (13)
- Center for Jewish History Digital Collections (15)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (56)
- CUNY Academic Works (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (8)
- Digital Repository at Iowa State University (1)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@The Texas Medical Center (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (8)
- Indian Institute of Science - Bangalore - Índia (61)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (15)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (2)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (52)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (26)
- Queensland University of Technology - ePrints Archive (332)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (4)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (11)
- Universidad Politécnica de Madrid (17)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- University of Michigan (71)
- University of Queensland eSpace - Australia (5)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (2)
Resumo:
In this paper we propose a solution to blind deconvolution of a scene with two layers (foreground/background). We show that the reconstruction of the support of these two layers from a single image of a conventional camera is not possible. As a solution we propose to use a light field camera. We demonstrate that a single light field image captured with a Lytro camera can be successfully deblurred. More specifically, we consider the case of space-varying motion blur, where the blur magnitude depends on the depth changes in the scene. Our method employs a layered model that handles occlusions and partial transparencies due to both motion blur and out of focus blur of the plenoptic camera. We reconstruct each layer support, the corresponding sharp textures, and motion blurs via an optimization scheme. The performance of our algorithm is demonstrated on synthetic as well as real light field images.