21 resultados para Calbuco Volcano


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serial intravascular ultrasound virtual histology (IVUS-VH) after implantation of metallic stents has been unable to show any changes in the composition of the scaffolded plaque overtime. The everolimus-eluting ABSORB scaffold potentially allows for the formation of new fibrotic tissue on the scaffolded coronary plaque during bioresorption. We examined the 12 month IVUS-VH changes in composition of the plaque behind the struts (PBS) following the implantation of the ABSORB scaffold. Using IVUS-VH and dedicated software, the composition of the PBS was analyzed in all patients from the ABSORB Cohort B2 trial, who were imaged with a commercially available IVUS-VH console (s5i system, Volcano Corporation, Rancho Cordova, CA, USA), immediately post-ABSORB implantation and at 12 month follow-up. Paired IVUS-VH data, recorded with s5i system, were available in 17 patients (18 lesions). The analysis demonstrated an increase in mean PBS area (2.39 ± 1.85 mm(2) vs. 2.76 ± 1.79 mm(2), P = 0.078) and a reduction in the mean lumen area (6.37 ± 0.90 mm(2) vs. 5.98 ± 0.97 mm(2), P = 0.006). Conversely, a significant decrease of 16 and 30% in necrotic core (NC) and dense calcium (DC) content, respectively, were evident (median % NC from 43.24 to 36.06%, P = 0.016; median % DC from 20.28 to 11.36%, P = 0.002). Serial IVUS-VH analyses of plaque located behind the ABSORB struts at 12-month demonstrated an increase in plaque area with a decrease in its NC and DC content. Larger studies are required to investigate the clinical impact of these findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The volcanic aerosol plume resulting from the Eyjafjallajökull eruption in Iceland in April and May 2010 was detected in clear layers above Switzerland during two periods (17–19 April 2010 and 16–19 May 2010). In-situ measurements of the airborne volcanic plume were performed both within ground-based monitoring networks and with a research aircraft up to an altitude of 6000 m a.s.l. The wide range of aerosol and gas phase parameters studied at the high altitude research station Jungfraujoch (3580 m a.s.l.) allowed for an in-depth characterization of the detected volcanic aerosol. Both the data from the Jungfraujoch and the aircraft vertical profiles showed a consistent volcanic ash mode in the aerosol volume size distribution with a mean optical diameter around 3 ± 0.3 μm. These particles were found to have an average chemical composition very similar to the trachyandesite-like composition of rock samples collected near the volcano. Furthermore, chemical processing of volcanic sulfur dioxide into sulfate clearly contributed to the accumulation mode of the aerosol at the Jungfraujoch. The combination of these in-situ data and plume dispersion modeling results showed that a significant portion of the first volcanic aerosol plume reaching Switzerland on 17 April 2010 did not reach the Jungfraujoch directly, but was first dispersed and diluted in the planetary boundary layer. The maximum PM10 mass concentrations at the Jungfraujoch reached 30 μgm−3 and 70 μgm−3 (for 10-min mean values) duri ng the April and May episode, respectively. Even low-altitude monitoring stations registered up to 45 μgm−3 of volcanic ash related PM10 (Basel, Northwestern Switzerland, 18/19 April 2010). The flights with the research aircraft on 17 April 2010 showed one order of magnitude higher number concentrations over the northern Swiss plateau compared to the Jungfraujoch, and a mass concentration of 320 (200–520) μgm−3 on 18 May 2010 over the northwestern Swiss plateau. The presented data significantly contributed to the time-critical assessment of the local ash layer properties during the initial eruption phase. Furthermore, dispersion models benefited from the detailed information on the volcanic aerosol size distribution and its chemical composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate and environmental reconstructions from natural archives are important for the interpretation of current climatic change. Few quantitative high-resolution reconstructions exist for South America which is the only land mass extending from the tropics to the southern high latitudes at 56°S. We analyzed sediment cores from two adjacent lakes in Northern Chilean Patagonia, Lago Castor (45°36′S, 71°47′W) and Laguna Escondida (45°31′S, 71°49′W). Radiometric dating (210Pb, 137Cs, 14C-AMS) suggests that the cores reach back to c. 900 BC (Laguna Escondida) and c. 1900 BC (Lago Castor). Both lakes show similarities and reproducibility in sedimentation rate changes and tephra layer deposition. We found eight macroscopic tephras (0.2–5.5 cm thick) dated at 1950 BC, 1700 BC, at 300 BC, 50 BC, 90 AD, 160 AD, 400 AD and at 900 AD. These can be used as regional time-synchronous stratigraphic markers. The two thickest tephras represent known well-dated explosive eruptions of Hudson volcano around 1950 and 300 BC. Biogenic silica flux revealed in both lakes a climate signal and correlation with annual temperature reanalysis data (calibration 1900–2006 AD; Lago Castor r = 0.37; Laguna Escondida r = 0.42, seven years filtered data). We used a linear inverse regression plus scaling model for calibration and leave-one-out cross-validation (RMSEv = 0.56 °C) to reconstruct sub decadal-scale temperature variability for Laguna Escondida back to AD 400. The lower part of the core from Laguna Escondida prior to AD 400 and the core of Lago Castor are strongly influenced by primary and secondary tephras and, therefore, not used for the temperature reconstruction. The temperature reconstruction from Laguna Escondida shows cold conditions in the 5th century (relative to the 20th century mean), warmer temperatures from AD 600 to AD 1150 and colder temperatures from AD 1200 to AD 1450. From AD 1450 to AD 1700 our reconstruction shows a period with stronger variability and on average higher values than the 20th century mean. Until AD 1900 the temperature values decrease but stay slightly above the 20th century mean. Most of the centennial-scale features are reproduced in the few other natural climate archives in the region. The early onset of cool conditions from c. AD 1200 onward seems to be confirmed for this region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated high temperature Mo isotope fractionation in a hydrous supra-subduction volcano-plutonic system (Kos, Aegean Arc, Greece) in order to address the debate on the δ98/95Mo variability of the continental crust. In this igneous system, where differentiation is interpreted to be dominated by fractional crystallization, bulk rock data from olivine basalt to dacite show δ98/95Mo ratios increasing from +0.3 to +0.6‰ along with Mo concentrations increasing from 0.8 to 4.1 μg g−1. Data for hornblende and biotite mineral separates reveal the extraction of light Mo into crystallizing silicates, with minimum partition coefficients between hornblende- silicate melt and biotite-silicate melt of 0.6 and 0.4 δ98/95Mo, respectively. Our data document significant Mo isotope fractionation at magmatic temperatures, hence, the igneous contribution to continental runoff is variable, besides probable source-related variability. Based on these results and published data an average continental δ98/95Mo of +0.3 to +0.4‰ can be derived. This signature corresponds more closely to the average of published data of dissolved Mo loads of large rivers than previous estimates and is consistent with an upper limit of δ98/95Mo = 0.4‰ of the Earth's upper crust as derived from the analysis of molybdenites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apollinaris Mons is an isolated volcano on Mars straddling the boundary between the southern highlands and the northern plains. One of its most distinctive features is its massive fan-shaped deposit that extends from a breach on its summit to distances of more than 150 km and drapes its entire southern flank. The composition and formation mechanism of these deposits remains controversial. We investigate the radar properties of the fan deposits (FD) of Apollinaris Mons using low-frequency sounding radar data in combination with high-resolution images and crater-size frequency analysis to constrain their inner shape and bulk composition. Our analysis indicates that the FD attains an irregular thickness and is gradually thinner towards their lateral margins. The crater-size frequency analysis shows that they may have undergone repeated resurfacing, which is suggestive of long-term evolution. Our analysis of Shallow Radar (SHARAD) radargrams traversing different sections of the FD reveals multiple and different subsurface interfaces among the radargrams crossing the thinnest part, which suggests a layered and complex inner shape. Our estimates for the bulk real part of the dielectric constant of the FD ranges from 3 to 5, which is consistent with an icy-silicate mixture or pyroclastic composition. Therefore, we conclude that lahars or pyroclastic flows are the most likely mechanism that created the FD, yet we cannot rule out additional contributions from lava flows. A combination of multiple processes is also possible since the deposits appear to have been modified by fluvial processes at a later stage of their formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Available geological calibration sites used to estimate the rate at which cosmogenic 3He is produced at the Earth’s surface are mostly clustered in medium to high latitudes. Moreover, most of them have exposure histories shorter than tens of thousands of years. This lack of sites prevents a qualitative assessment of available production models used to convert cosmogenic 3He concentrations into exposure ages and/or denudation rates. It thus limits our ability to take into account the atmospheric, geomagnetic and solar modulation conditions that might have affected the production of cosmogenic nuclides in the past for longer exposure histories and in low latitude regions. We present the cosmogenic 3He production rate inferred from a new geological calibration site located in northern Chile. Five samples were collected on the surface of the largest and best-preserved lava flow of the San Pedro volcano (21.934°S-68.510°W- 3390 m a.s.l), which displays pristine crease-structure features. 40Ar/39Ar dating yield a reliable plateau age of 107±12 ka for the eruption of this lava flow. Eight pyroxene aliquots separated from the surface samples yield a weighted average cosmogenic 3He concentration of 99.3±1.2 Mat.g-1 from which a local cosmogenic 3He production rate of 928±101 at.g-1.yr-1 is calculated. The local production rate is then scaled to a sea level high latitude (SLHL) reference position using different combinations of geographic spatialization schemes, atmosphere models and geomagnetic field reconstructions, yielding SLHL production rates between 103±11 and 130±14 at.g-1.yr-1 consistent with the most recent estimates available from the literature. Finally, we use the same scaling frameworks to re-evaluate the mean global-scale cosmogenic 3He production rate in olivine and pyroxene minerals at 120±16 at.g-1.yr-1 from the compilation of previously published calibration datasets.