33 resultados para CYCLIC ETHERS
Resumo:
Three new diacetylenic spiroketal enol ethers named flosculins A (1), B (2), and C (3), along with five known compounds (4-8) of the same structural class, were isolated from the leaves of Plagius flosculosus. The structures were deduced by extensive 1D and 2D NMR spectroscopy and mass spectrometry. All isolated compounds exhibited significant cytotoxic activity against leukemia cells (Jurkat T and HL-60). Compounds 5-8 induced apoptosis in HL-60 cells with corresponding IC(50) values ranging from 4 to 6 microM.
Resumo:
OBJECTIVES: To report a novel observation of neutrophil signal transduction abnormalities in patients with localized aggressive periodontitis (LAP) that are associated with an enhanced phosphorylation of the nuclear signal transduction protein cyclic AMP response element-binding factor (CREB). METHOD AND MATERIALS: Peripheral venous blood neutrophils of 18 subjects, 9 patients with LAP and 9 race-, sex-, and age-matched healthy controls, were isolated and prepared using the Ficoll-Hypaque density-gradient technique. Neutrophils (5.4 x 10(6)/mL) were stimulated with the chemoattractant FMLP (10(-6) mol/L) for 5 minutes and lysed. Aliquots of these samples were separated by SDS-PAGE (60 microg/lane) on 9.0% (w/v) polyacrylamide slab gels and transferred electrophoretically to polyvinyl difluoride membranes. The cell lysates were immunoblotted with a 1:1,000 dilution of rabbit-phospho-CREB antibody that recognizes only the phosphorylated form of CREB at Ser133. The activated CREB was visualized with a luminol-enhanced chemoluminescence detection system and evaluated by laser densitometry. RESULTS: In patients with LAP, the average activation of CREB displayed an overexpression for the unstimulated peripheral blood neutrophils of 80.3% (17.5-fold) compared to healthy controls (4.6%). CONCLUSION: LAP neutrophils who express their phenotype appear to be constitutively primed, as evidenced by activated CREB in resting cells compared to normal individuals. The genetically primed neutrophil phenotype may contribute to neutrophil-mediated tissue damage in the pathogenesis of LAP.
Resumo:
Expression of the extracellular matrix (ECM) protein tenascin-C is induced in fibroblasts by growth factors as well as by tensile strain. Mechanical stress can act on gene regulation directly, or indirectly via the paracrine release of soluble factors by the stimulated cells. To distinguish between these possibilities for tenascin-C, we asked whether cyclic tensile strain and soluble factors, respectively, induced its mRNA via related or separate mechanisms. When cyclic strain was applied to chick embryo fibroblasts cultured on silicone membranes, tenascin-C mRNA and protein levels were increased twofold within 6 h compared to the resting control. Medium conditioned by strained cells did not stimulate tenascin-C mRNA in resting cells. Tenascin-C mRNA in resting cells was increased by serum; however, cyclic strain still caused an additional induction. Likewise, the effect of TGF-beta1 or PDGF-BB was additive to that of cyclic strain, whereas IL-4 or H2O2 (a reactive oxygen species, ROS) did not change tenascin-C mRNA levels. Antagonists for distinct mitogen-activated protein kinases (MAPK) inhibited tenascin-C induction by TGF-beta1 and PDGF-BB, but not by cyclic strain. Conversely, a specific inhibitor of Rho-dependent kinase strongly attenuated the response of tenascin-C mRNA to cyclic strain, but had limited effect on induction by growth factors. The data suggest that regulation of tenascin-C in fibroblasts by cyclic strain occurs independently from soluble mediators and MAPK pathways; however, it requires Rho/ROCK signaling.
Resumo:
Randomly spread fibroblasts on fibronectin-coated elastomeric membranes respond to cyclic strain by a varying degree of focal adhesion assembly and actin reorganization. We speculated that the individual shape of the cells, which is linked to cytoskeletal structure and pre-stress, might tune these integrin-dependent mechanotransduction events. To this aim, fibronectin circles, squares and rectangles of identical surface area (2000μm(2)) were micro-contact printed onto elastomeric substrates. Fibroblasts plated on these patterns occupied the corresponding shapes. Cyclic 10% equibiaxial strain was applied to patterned cells for 30min, and changes in cytoskeleton and cell-matrix adhesions were quantified after fluorescence staining. After strain, megakaryocytic leukemia-1 protein translocated to the nucleus in most cells, indicating efficient RhoA activation independently of cell shape. However, circular and square cells (with radial symmetry) showed a significantly greater increase in the number of actin stress fibers and vinculin-positive focal adhesions after cyclic strain than rectangular (bipolar) cells of identical size. Conversely, cyclic strain induced larger changes in pY397-FAK positive focal complexes and zyxin relocation from focal adhesions to stress fibers in bipolar compared to symmetric cells. Thus, radially symmetric cells responded to cyclic strain with a larger increase in assembly, whereas bipolar cells reacted with more pronounced reorganization of actin stress fibers and matrix contacts. We conclude that integrin-mediated responses to external mechanical strain are differentially modulated in cells that have the same spreading area but different geometries, and do not only depend on mere cell size.
Resumo:
Human steroid biosynthesis depends on a specifically regulated cascade of enzymes including 3β-hydroxysteroid dehydrogenases (HSD3Bs). Type 2 HSD3B catalyzes the conversion of pregnenolone, 17α-hydroxypregnenolone and dehydroepiandrosterone to progesterone, 17α-hydroxyprogesterone and androstenedione in the human adrenal cortex and the gonads but the exact regulation of this enzyme is unknown. Therefore, specific downregulation of HSD3B2 at adrenarche around age 6-8 years and characteristic upregulation of HSD3B2 in the ovaries of women suffering from the polycystic ovary syndrome remain unexplained prompting us to study the regulation of HSD3B2 in adrenal NCI-H295R cells. Our studies confirm that the HSD3B2 promoter is regulated by transcription factors GATA, Nur77 and SF1/LRH1 in concert and that the NBRE/Nur77 site is crucial for hormonal stimulation with cAMP. In fact, these three transcription factors together were able to transactivate the HSD3B2 promoter in placental JEG3 cells which normally do not express HSD3B2. By contrast, epigenetic mechanisms such as methylation and acetylation seem not involved in controlling HSD3B2 expression. Cyclic AMP was found to exert differential effects on HSD3B2 when comparing short (acute) versus long-term (chronic) stimulation. Short cAMP stimulation inhibited HSD3B2 activity directly possibly due to regulation at co-factor or substrate level or posttranslational modification of the protein. Long cAMP stimulation attenuated HSD3B2 inhibition and increased HSD3B2 expression through transcriptional regulation. Although PKA and MAPK pathways are obvious candidates for possibly transmitting the cAMP signal to HSD3B2, our studies using PKA and MEK1/2 inhibitors revealed no such downstream signaling of cAMP. However, both signaling pathways were clearly regulating HSD3B2 expression.
Resumo:
The occurrence and temporal variation of 18 perfluoroalkyl substances (PFASs) and 8 polybrominated diphenyl ethers (PBDEs) in the European Alps was investigated in a 10 m shallow firn core from Colle Gnifetti in the Monte Rosa Massif (4455 m above sea level). The firn core encompasses the years 1997-2007. Firn core sections were analyzed by liquid chromatography-tandem mass spectrometry (PFASs) and gas chromatography-mass spectrometry (PBDEs). We detected 12 PFASs and 8 PBDEs in the firn samples. Perfluorobutanoic acid (PFBA; 0.3-1.8 ng L(-1)) and perfluorooctanoic acid (PFOA; 0.2-0.6 ng L(-1)) were the major PFASs while BDE 99 (