23 resultados para COSMIC BACKGROUND RADIATION
                                
                                
Resumo:
BACKGROUND The optimal management of high-risk prostate cancer remains uncertain. In this study we assessed the safety and efficacy of a novel multimodal treatment paradigm for high-risk prostate cancer. METHODS This was a prospective phase II trial including 35 patients with newly diagnosed high-risk localized or locally advanced prostate cancer treated with high-dose intensity-modulated radiation therapy preceded or not by radical prostatectomy, concurrent intensified-dose docetaxel-based chemotherapy and long-term androgen deprivation therapy. Primary endpoint was acute and late toxicity evaluated with the Common Terminology Criteria for Adverse Events version 3.0. Secondary endpoint was biochemical and clinical recurrence-free survival explored with the Kaplan-Meier method. RESULTS Acute gastro-intestinal and genito-urinary toxicity was grade 2 in 23% and 20% of patients, and grade 3 in 9% and 3% of patients, respectively. Acute blood/bone marrow toxicity was grade 2 in 20% of patients. No acute grade ≥ 4 toxicity was observed. Late gastro-intestinal and genito-urinary toxicity was grade 2 in 9% of patients each. No late grade ≥ 3 toxicity was observed. Median follow-up was 63 months (interquartile range 31-79). Actuarial 5-year biochemical and clinical recurrence-free survival rate was 55% (95% confidence interval, 35-75%) and 70% (95% confidence interval, 52-88%), respectively. CONCLUSIONS In our phase II trial testing a novel multimodal treatment paradigm for high-risk prostate cancer, toxicity was acceptably low and mid-term oncological outcome was good. This treatment paradigm, thus, may warrant further evaluation in phase III randomized trials.
                                
Resumo:
BACKGROUND Neuroendocrine tumors are well vascularized and express specific cell surface markers, such as somatostatin receptors and the glucagon-like peptide-1 receptor (GLP-1R). Using the Rip1Tag2 transgenic mouse model of pancreatic neuroendocrine tumors (pNET), we have investigated the potential benefit of a combination of anti-angiogenic treatment with targeted internal radiotherapy. METHODS [Lys40(Ahx-DTPA-111In)NH2]-exendin-4, a radiopeptide that selectively binds to GLP-1R expressed on insulinoma and other neuroendocrine tumor cells, was co-administered with oral vatalanib (an inhibitor of vascular endothelial growth factor receptors (VEGFR)) or imatinib (a c-kit/PDGFR inhibitor). The control groups included single-agent kinase inhibitor treatments and [Lys40(Ahx-DTPA-natIn)NH2]-exendin-4 monotherapy. For biodistribution, Rip1Tag2 mice were pre-treated with oral vatalanib or imatinib for 0, 3, 5, or 7 days at a dose of 100 mg/kg. Subsequently, [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 was administered i.v., and the biodistribution was assessed after 4 h. For therapy, the mice were injected with 1.1 MBq [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 and treated with vatalanib or imatinib 100 mg/kg orally for another 7 days. Tumor volume, tumor cell apoptosis and proliferation, and microvessel density were quantified. RESULTS Combination of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 and vatalanib was significantly more effective than single treatments (p < 0.05) and reduced the tumor volume by 97% in the absence of organ damage. The pre-treatment of mice with vatalanib led to a reduction in the tumor uptake of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4, indicating that concomitant administration of vatalanib and the radiopeptide was the best approach. Imatinib did not show a synergistic effect with [Lys40(Ahx-DTPA-111In)NH2]-exendin-4. CONCLUSION The combination of 1.1 MBq of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 with 100 mg/kg vatalanib had the same effect on a neuroendocrine tumor as the injection of 28 MBq of the radiopeptide alone but without any apparent side effects, such as radiation damage of the kidneys.
                                
Resumo:
Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at 0T > 16 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors.
                                
Resumo:
To date, the radiative impact of dust and the Sahar an air layer (SAL) on North Atlantic hurricane activity is not yet known. According to previous studies, dust stabilizes the atmosphere due to absorption of solar radiation but thus shifts convection to regions more conducive for hurricane genesis. Here we analyze differences in hurricane genesis and frequency from ensemble sensitivity simulations with radiatively active and inactive dust in the aerosol-climate model ECHAM6-HAM. We investigate dust burden and other hurricane-related variables and determine their influence on disturbances which develop into hurricanes (developing disturbances, DDs) and those which do not (nondeveloping disturbances, NDDs). Dust and the SAL are found to potentially have both inhibiting and supporting influences on background conditions for hurricane genesis. A slight southward shift of DDs is determined when dust is active as well as a significant warming of the SAL, which leads to a strengthening of the vertical circulation associated with the SAL. The dust burden of DDs is smaller in active dust simulations compared to DDs in simulations with inactive dust, while NDDs contain more dust in active dust simulations. However, no significant influence of radiatively active dust on other variables in DDs and NDDs is found. Furthermore, no substantial change in the DD and NDD frequency due to the radiative effects of dust can be detected.
                                
Resumo:
The radiation dose rates at flight altitudes can increase by orders of magnitude for a short time during energetic solar cosmic ray events, so called ground level enhancements (GLEs). Especially at high latitudes and flight altitudes, solar energetic particles superposed on galactic cosmic rays may cause radiation that exceeds the maximum allowed dosage limit for the general public. Therefore the determination of the radiation dose rate during GLEs should be as reliable as possible. Radiation dose rates along flight paths are typically determined by computer models that are based on cosmic ray flux and anisotropy parameters derived from neutron monitor and/or satellite measurements. The characteristics of the GLE on 15 April 2001 (GLE60) were determined and published by various authors. In this work we compare these results and investigate the consequences on the computed radiation dose rates along selected flight paths. In addition, we compare the computed radiation dose rates with measurements that were made during GLE60 on board two transatlantic flights.
                                
Resumo:
BACKGROUND Air enema under fluoroscopy is a well-accepted procedure for the treatment of childhood intussusception. However, the reported radiation doses of pneumatic reduction with conventional fluoroscopy units have been high in decades past. OBJECTIVE To compare current radiation doses at our institution to past doses reported by others for fluoroscopic-guided pneumatic reduction of ileo-colic intussusception in children. MATERIALS AND METHODS Since 2007 radiologists and residents in our department who perform reduction of intussusceptions have received a radiation risk training. We retrospectively analyzed the data of 45 children (5 months-8 years) who underwent a total of 48 pneumatic reductions of ileo-colic intussusception between 2008 and 2012. We analyzed data for screening time and dose area product (DAP) and compared these data to those reported up to and including the year 2000. RESULTS Our mean screening time measured by the DAP-meter was 53.8 s (range 1-320 s, median 33.0 s). The mean DAP was 11.4 cGy ∙ cm(2) (range 1-145 cGy ∙ cm(2), median 5.45 cGy ∙ cm(2)). There was one bowel perforation, in a 1-year-old boy requiring surgical revision. Only three studies in the literature presented radiation exposure results on children who received pneumatic or hydrostatic reduction of intussusception under fluoroscopy. Screening times and dose area products in those studies, which were published in the 1990 s and in the year 2000, were substantially higher than those in our sample. CONCLUSION Low-frequency pulsed fluoroscopy and other dose-saving keys as well as the radiation risk training might have helped to improve the quality of the procedure in terms of radiation exposure.
                                
Resumo:
BACKGROUND Atypical meningiomas are an intermediate grade brain tumour with a recurrence rate of 39-58 %. It is not known whether early adjuvant radiotherapy reduces the risk of tumour recurrence and whether the potential side-effects are justified. An alternative management strategy is to perform active monitoring with magnetic resonance imaging (MRI) and to treat at recurrence. There are no randomised controlled trials comparing these two approaches. METHODS/DESIGN A total of 190 patients will be recruited from neurosurgical/neuro-oncology centres across the United Kingdom, Ireland and mainland Europe. Adult patients undergoing gross total resection of intracranial atypical meningioma are eligible. Patients with multiple meningioma, optic nerve sheath meningioma, previous intracranial tumour, previous cranial radiotherapy and neurofibromatosis will be excluded. Informed consent will be obtained from patients. This is a two-stage trial (both stages will run in parallel): Stage 1 (qualitative study) is designed to maximise patient and clinician acceptability, thereby optimising recruitment and retention. Patients wishing to continue will proceed to randomisation. Stage 2 (randomisation) patients will be randomised to receive either early adjuvant radiotherapy for 6 weeks (60 Gy in 30 fractions) or active monitoring. The primary outcome measure is time to MRI evidence of tumour recurrence (progression-free survival (PFS)). Secondary outcome measures include assessing the toxicity of the radiotherapy, the quality of life, neurocognitive function, time to second line treatment, time to death (overall survival (OS)) and incremental cost per quality-adjusted life year (QALY) gained. DISCUSSION ROAM/EORTC-1308 is the first multi-centre randomised controlled trial designed to determine whether early adjuvant radiotherapy reduces the risk of tumour recurrence following complete surgical resection of atypical meningioma. The results of this study will be used to inform current neurosurgery and neuro-oncology practice worldwide. TRIAL REGISTRATION ISRCTN71502099 on 19 May 2014.
 
                    