37 resultados para CHROMATIN IMMUNOPRECIPITATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed the chromatin structure of the porcine tumor necrosis factor gene locus (TNF-alpha and TNF-beta). Nuclei from porcine peripheral blood mononuclear cells were digested with different nucleases. As assessed with micrococcal nuclease, the two TNF genes displayed slightly faster digestion kinetics than bulk DNA. Studies with DNaseI revealed distinct DNaseI hypersensitive sites (DH-sites) within the porcine TNF locus. Four DH-sites could be observed in the promoter and mRNA leader regions of the TNF-beta gene. Two DH-sites could be observed for the TNF-alpha gene, one located in the promoter region close to the TATA-box and the other site in intron 3. This pattern of DH-sites was present independently of the activation state of the cells. Interestingly in a porcine macrophage-like cell line, we found that the TNF-alpha promoter DH-site disappeared and another DH-site appeared in the region of intron 1. Additionally, the DH-site of intron 3 could be enhanced by PMA-stimulation in these cells. TNF-beta sites were not detected in this cell line. However, DH-sites were totally absent in fibroblasts (freshly isolated from testicles) and in porcine kidney cells (PK15 cell line) both of which do not transcribe the TNF genes. Therefore, the pattern of DH-sites corresponds to the transcriptional activity of analyzed cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome. Only a handful of proteins involved in this process have been identified so far and the mechanism of DNA targeting is unknown. Here we describe chromatin assembly factor-1-like protein (PtCAF-1), which we show is required for the survival of sexual progeny and localizes first in the parental and later in the newly developing macronucleus. Gene silencing shows that PtCAF-1 is required for the elimination of transposable elements and a subset of IESs. PTCAF-1 depletion also impairs the selection of germline-specific scnRNAs during development. We identify specific histone modifications appearing during Paramecium development which are strongly reduced in PTCAF-1 depleted cells. Our results demonstrate the importance of PtCAF-1 for the epigenetic trans-nuclear cross-talk mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons exploit local mRNA translation and retrograde transport of transcription factors to regulate gene expression in response to signaling events at distal neuronal ends. Whether epigenetic factors could also be involved in such regulation is not known. We report that the mRNA encoding the high-mobility group N5 (HMGN5) chromatin binding protein localizes to growth cones of both neuron-like cells and of hippocampal neurons, where it has the potential to be translated, and that HMGN5 can be retrogradely transported into the nucleus along neurites. Loss of HMGN5 function induces transcriptional changes and impairs neurite outgrowth, while HMGN5 overexpression induces neurite outgrowth and chromatin decompaction; these effects are dependent on growth cone localization of Hmgn5 mRNA. We suggest that the localization and local translation of transcripts coding for epigenetic factors couple the dynamic neuronal outgrowth process with chromatin regulation in the nucleus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanical stress controls a broad range of cellular functions. The cytoskeleton is physically connected to the extracellular matrix via integrin receptors, and to the nuclear lamina by the LINC complex that spans both nuclear membranes. We asked here how disruption of this direct link from the cytoskeleton to nuclear chromatin affects mechanotransduction. Fibroblasts grown on flexible silicone membranes reacted to cyclic stretch by nuclear rotation. This rotation was abolished by inhibition of actomyosin contraction as well as by overexpression of dominant-negative versions of nesprin or sun proteins that form the LINC complex. In an in vitro model of muscle differentiation, cyclic strain inhibits differentiation and induces proliferation of C2C12 myoblasts. Interference with the LINC complex in these cells abrogated their stretch-induced proliferation, while stretch increased p38 MAPK and NFkappaB phosphorylation and the transcript levels of myogenic transcription factors MyoD and myogenin. We found that the physical link from the cytoskeleton to the nuclear lamina is crucial for correct mechanotransduction, and that disruption of the LINC complex perturbs the mechanical control of cell differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cytidine deaminase AID hypermutates immunoglobulin genes but can also target oncogenes, leading to tumorigenesis. The extent of AID's promiscuity and its predilection for immunoglobulin genes are unknown. We report here that AID interacted broadly with promoter-proximal sequences associated with stalled polymerases and chromatin-activating marks. In contrast, genomic occupancy of replication protein A (RPA), an AID cofactor, was restricted to immunoglobulin genes. The recruitment of RPA to the immunoglobulin loci was facilitated by phosphorylation of AID at Ser38 and Thr140. We propose that stalled polymerases recruit AID, thereby resulting in low frequencies of hypermutation across the B cell genome. Efficient hypermutation and switch recombination required AID phosphorylation and correlated with recruitment of RPA. Our findings provide a rationale for the oncogenic role of AID in B cell malignancy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nephrogenic dopamine is a potent natriuretic paracrine/autocrine hormone that is central for mammalian sodium homeostasis. In the renal proximal tubule, dopamine induces natriuresis partly via inhibition of the sodium/proton exchanger NHE3. The signal transduction pathways and mechanisms by which dopamine inhibits NHE3 are complex and incompletely understood. This manuscript describes the role of the serine/threonine protein phosphatase 2A (PP2A) in the regulation of NHE3 by dopamine. The PP2A regulatory subunit B56 delta (coded by the Ppp2r5d gene) directly associates with more than one region of the carboxy-terminal hydrophilic putative cytoplasmic domain of NHE3 (NHE3-cyto), as demonstrated by yeast-two-hybrid, co-immunoprecipitation, blot overlay and in vitro pull-down assays. Phosphorylated NHE3-cyto is a substrate for purified PP2A in an in vitro dephosphorylation reaction. In cultured renal cells, inhibition of PP2A by either okadaic acid or by overexpression of the simian virus 40 (SV40) small t antigen blocks the ability of dopamine to inhibit NHE3 activity and to reduce surface NHE3 protein. Dopamine-induced NHE3 redistribution is also blocked by okadaic acid ex vivo in rat kidney cortical slices. These studies demonstrate that PP2A is an integral and critical participant in the signal transduction pathway between dopamine receptor activation and NHE3 inhibition. Key words: Natriuresis, Sodium transport, Signal transduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Somatic angiotensin-converting enzyme (sACE) is crucial in cardiovascular homeostasis and displays a tissue-specific profile. Epigenetic patterns modulate genes expression and their alterations were implied in pathologies including hypertension. However, the influence of DNA methylation and chromatin condensation state on the expression of sACE is unknown. We examined whether such epigenetic mechanisms could participate in the control of sACE expression in vitro and in vivo. We identified two CpG islands in the human ace-1 gene 3 kb proximal promoter region. Their methylation abolished the luciferase activity of ace-1 promoter/reporter constructs transfected into human liver (HepG2), colon (HT29), microvascular endothelial (HMEC-1) and lung (SUT) cell lines (p < 0.001). Bisulphite sequencing revealed a cell-type specific basal methylation pattern of the ace-1 gene -1,466/+25 region. As assessed by RT-qPCR, inhibition of DNA methylation by 5-aza-2'-deoxycytidine and/or of histone deacetylation by trichostatin A highly stimulated sACE mRNA expression cell-type specifically (p < 0.001 vs. vehicle treated cells). In the rat, in vivo 5-aza-cytidine injections demethylated the ace-1 promoter and increased sACE mRNA expression in the lungs and liver (p = 0.05), but not in the kidney. In conclusion, the expression level of somatic ACE is modulated by CpG-methylation and histone deacetylases inhibition. The basal methylation pattern of the promoter of the ace-1 gene is cell-type specific and correlates to sACE transcription. DNMT inhibition is associated with altered methylation of the ace-1 promoter and a cell-type and tissue-specific increase of sACE mRNA levels. This study indicates a strong influence of epigenetic mechanisms on sACE expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs). GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut) forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE) is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A) RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A) binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are also consistent with stage-specific regulation of translation in trypanosomes, but most likely in the context of initiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, we identified a microduplication in chromosomal band 1q21.1 encompassing the CHD1L/ALC1 gene encoding a chromatin-remodelling enzyme in congenital anomalies of the kidneys and urinary tract (CAKUT) patient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Heterochromatin protein 1 (HP1) family proteins have a well-characterized role in heterochromatin packaging and gene regulation. Their function in organismal development, however, is less well understood. Here we used genome-wide expression profiling to assess novel functions of the Caenorhabditis elegans HP1 homolog HPL-2 at specific developmental stages. Results We show that HPL-2 regulates the expression of germline genes, extracellular matrix components and genes involved in lipid metabolism. Comparison of our expression data with HPL-2 ChIP-on-chip profiles reveals that a significant number of genes up- and down-regulated in the absence of HPL-2 are bound by HPL-2. Germline genes are specifically up-regulated in hpl-2 mutants, consistent with the function of HPL-2 as a repressor of ectopic germ cell fate. In addition, microarray results and phenotypic analysis suggest that HPL-2 regulates the dauer developmental decision, a striking example of phenotypic plasticity in which environmental conditions determine developmental fate. HPL-2 acts in dauer at least partly through modulation of daf-2/IIS and TGF-β signaling pathways, major determinants of the dauer program. hpl-2 mutants also show increased longevity and altered lipid metabolism, hallmarks of the long-lived, stress resistant dauers. Conclusions Our results suggest that the worm HP1 homologue HPL-2 may coordinately regulate dauer diapause, longevity and lipid metabolism, three processes dependent on developmental input and environmental conditions. Our findings are of general interest as a paradigm of how chromatin factors can both stabilize development by buffering environmental variation, and guide the organism through remodeling events that require plasticity of cell fate regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing evidence suggest that the long "untranslated" region (UTR) between the matrix (M) and the fusion (F) proteins of morbilliviruses has a functional role. In canine distemper virus (CDV), the F 5' UTR was recently shown to code for a long F signal peptide (Fsp). Subsequently, it was reported that the M/F UTRs combined with the long Fsp were synergistically regulating the F mRNA and protein expression, thereby modulating virulence. Unique to CDV, a short putative open reading frame (ORF) has been identified within the wild-type CDV-M 3' UTR (termed M2). Here, we investigated whether M2 was expressed from the genome of the virulent and demyelinating A75/17-CDV strain. An expression plasmid encoding the M2 ORF tagged both at its N-terminal (HA) and C-terminal domains (RFP), was first constructed. Then, a recombinant virus with its putative M2 ORF replaced by HA-M2-RFP was successfully recovered from cDNA (termed recA75/17(green)-HA-M2-RFP). M2 expression in cells transfected or infected with these mutants was studied by immunoprecipitation, immunofluorescence, immunoblot and flow cytometry analyses. Although fluorescence was readily detected in HA-M2-RFP-transfected cells, absence of red fluorescence emission in several recA75/17(green)-HA-M2-RFP-infected cell types suggested lack of M2 biosynthesis, which was confirmed by the other techniques. Consistent with these data, no functional role of the short polypeptide was revealed by infecting various cell types with HA-M2-RFP over-expressing or M2-knockout recombinant viruses. Thus, in sharp contrast to the CDV-F 5' UTR reported to translate a long Fsp, our data provided evidence that the CDV-M 3' UTR does not express any polypeptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemotherapy modestly prolongs survival of patients with advanced gastric cancer, but strategies are needed to increase its efficacy. Histone deacetylase (HDAC) inhibitors modify chromatin and can block cancer cell proliferation and promote apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Nuclear factor (NF)-kappaB signalling pathway plays a critical role in the regulation and coordination of a wide range of cellular events such as cell growth, apoptosis and cell differentiation. Activation of the IKK (inhibitor of NF-kappaB kinase) complex is a crucial step and a point of convergence of all known NF-kappaB signalling pathways. To analyse bovine IKKalpha (IKK1), IKKbeta (IKK2) and IKKgamma (or NF-kappaB Essential MOdulator, NEMO) and their substrate IkappaBalpha (Inhibitor of NF-kappaB), the corresponding cDNAs of these molecules were isolated, sequenced and characterized. A comparison of the amino acid sequences with those of their orthologues in other species showed a very high degree of identity, suggesting that the IKK complex and its substrate IkappaBalpha are evolutionarily highly conserved components of the NF-kappaB pathway. Bovine IKKalpha and IKKbeta are related protein kinases showing 50% identity which is especially prominent in the kinase and leucine zipper domains. Co-immunoprecipitation assays and GST-pull-down experiments were carried out to determine the composition of bovine IKK complexes compared to that in human Jurkat T cells. Using these approaches, the presence of bovine IKK complexes harbouring IKKalpha, IKKbeta, NEMO and the interaction of IKK with its substrate IkappaBalpha could be demonstrated. Parallel experiments using human Jurkat T cells confirmed the high degree of conservation also at the level of protein-protein interactions. Finally, a yeast two-hybrid analysis showed that bovine NEMO molecules, in addition to the binding to IKKalpha and IKKbeta, also strongly interact with each other.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: There are inherent conceptual problems in investigating the pharmacodynamics of cancer drugs in vivo. One of the few possible approaches is serial biopsies in patients. However, this type of research is severely limited by methodological and ethical constraints. MATERIALS AND METHODS: A modified 3-dimensional tissue culture technique was used to culture human tumor samples, which had been collected during routine cancer operations. Twenty tumor samples of patients with non-small cell lung cancer (NSCLC) were cultured ex vivo for 120 h and treated with mitomycin C, taxotere and cisplatin. The cytotoxic activity of the anticancer agents was quantified by assessing the metabolic activity of treated tumor cultures and various assays of apoptosis and gene expression were performed. RESULTS: The proliferative activity of the tissue was maintained in culture as assessed by Ki-67 staining. Mitomycin C, cisplatin and taxotere reduced the metabolic activity of the tumor tissue cultures by 51%, 29% and 20%, respectively, at 120 h. The decrease in metabolic activity corresponded to the induction of apoptosis as demonstrated by the typical morphological changes, such as chromatin condensation and nuclear fragmentation. In addition, activated caspase-3 could be verified in apoptotic cells by immunohistochemistry. To verify functional aspects of apoptosis, the induction of chemotherapy-induced cell death was inhibited with the caspase inhibitor z-VAD.fmk. RNA was extracted from the tissue cultures after 120 h of ex vivo drug treatment and was of sufficient quality to allow quantitative PCR. CONCLUSION: The 3-dimensional ex vivo culture technique is a useful method to assess the molecular effects of pharmacological interventions in human cancer samples in vitro. This culture technique could become an important tool for drug development and for the prediction of in vivo drug efficacy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platelets are known to contain platelet factor 4 and beta-thromboglobulin, alpha-chemokines containing the CXC motif, but recent studies extended the range to the beta-family characterized by the CC motif, including RANTES and Gro-alpha. There is also evidence for expression of chemokine receptors CCR4 and CXCR4 in platelets. This study shows that platelets have functional CCR1, CCR3, CCR4, and CXCR4 chemokine receptors. Polymerase chain reaction detected chemokine receptor messenger RNA in platelet RNA. CCR1, CCR3, and especially CCR4 gave strong signals; CXCR1 and CXCR4 were weakly positive. Flow cytometry with specific antibodies showed the presence of a clear signal for CXCR4 and weak signals for CCR1 and CCR3, whereas CXCR1, CXCR2, CXCR3, and CCR5 were all negative. Immunoprecipitation and Western blotting with polyclonal antibodies to cytoplasmic peptides clearly showed the presence of CCR1 and CCR4 in platelets in amounts comparable to monocytes and CCR4 transfected cells, respectively. Chemokines specific for these receptors, including monocyte chemotactic protein 1, macrophage inflammatory peptide 1alpha, eotaxin, RANTES, TARC, macrophage-derived chemokine, and stromal cell-derived factor 1, activate platelets to give Ca(++) signals, aggregation, and release of granule contents. Platelet aggregation was dependent on release of adenosine diphosphate (ADP) and its interaction with platelet ADP receptors. Part, but not all, of the Ca(++) signal was due to ADP release feeding back to its receptors. Platelet activation also involved heparan or chondroitin sulfate associated with the platelet surface and was inhibited by cleavage of these glycosaminoglycans or by heparin or low molecular weight heparin. These platelet receptors may be involved in inflammatory or allergic responses or in platelet activation in human immunodeficiency virus infection.