81 resultados para C-H ACTIVATION
Resumo:
Mapping and ablation of atrial tachycardias (ATs) secondary to catheter ablation of atrial fibrillation (AF) is often challenging due to the complex atrial substrate, different AT mechanisms, and potential origin not only in the left atrium (LA) but also from the right atrium (RA) and the adjacent thoracic veins.
Resumo:
This study assessed the safety and efficacy of a novel implantable device therapy in resistant hypertension patients.
Resumo:
Activators of 5'-AMP-activated protein kinase (AMPK) 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), metformin, and exercise activate atypical protein kinase C (aPKC) and ERK and stimulate glucose transport in muscle by uncertain mechanisms. Here, in cultured L6 myotubes: AICAR- and metformin-induced activation of AMPK was required for activation of aPKC and ERK; aPKC activation involved and required phosphoinositide-dependent kinase 1 (PDK1) phosphorylation of Thr410-PKC-zeta; aPKC Thr410 phosphorylation and activation also required MEK1-dependent ERK; and glucose transport effects of AICAR and metformin were inhibited by expression of dominant-negative AMPK, kinase-inactive PDK1, MEK1 inhibitors, kinase-inactive PKC-zeta, and RNA interference (RNAi)-mediated knockdown of PKC-zeta. In mice, muscle-specific aPKC (PKC-lambda) depletion by conditional gene targeting impaired AICAR-stimulated glucose disposal and stimulatory effects of both AICAR and metformin on 2-deoxyglucose/glucose uptake in muscle in vivo and AICAR stimulation of 2-[(3)H]deoxyglucose uptake in isolated extensor digitorum longus muscle; however, AMPK activation was unimpaired. In marked contrast to AICAR and metformin, treadmill exercise-induced stimulation of 2-deoxyglucose/glucose uptake was not inhibited in aPKC-knockout mice. Finally, in intact rodents, AICAR and metformin activated aPKC in muscle, but not in liver, despite activating AMPK in both tissues. The findings demonstrate that in muscle AICAR and metformin activate aPKC via sequential activation of AMPK, ERK, and PDK1 and the AMPK/ERK/PDK1/aPKC pathway is required for metformin- and AICAR-stimulated increases in glucose transport. On the other hand, although aPKC is activated by treadmill exercise, this activation is not required for exercise-induced increases in glucose transport, and therefore may be a redundant mechanism.
Resumo:
Genetic polymorphisms near IL28B are associated with spontaneous and treatment-induced clearance of hepatitis C virus (HCV), two processes that require the appropriate activation of the host immune responses. Intrahepatic inflammation is believed to mirror such activation, but its relationship with IL28B polymorphisms has yet to be fully appreciated. We analyzed the association of IL28B polymorphisms with histological and follow-up features in 2335 chronically HCV-infected Caucasian patients. Assessable phenotypes before any antiviral treatment included necroinflammatory activity (n = 1,098), fibrosis (n = 1,527), fibrosis progression rate (n = 1,312), and hepatocellular carcinoma development (n = 1,915). Associations of alleles with the phenotypes were evaluated by univariate analysis and multivariate logistic regression, accounting for all relevant covariates. The rare G allele at IL28B marker rs8099917-previously shown to be at risk of treatment failure-was associated with lower activity (P = 0.04), lower fibrosis (P = 0.02) with a trend toward lower fibrosis progression rate (P = 0.06). When stratified according to HCV genotype, most significant associations were observed in patients infected with non-1 genotypes (P = 0.003 for activity, P = 0.001 for fibrosis, and P = 0.02 for fibrosis progression rate), where the odds ratio of having necroinflammation or rapid fibrosis progression for patients with IL28B genotypes TG or GG versus TT were 0.48 (95% confidence intervals 0.30-0.78) and 0.56 (0.35-0.92), respectively. IL28B polymorphisms were not predictive of the development of hepatocellular carcinoma.
Resumo:
Hypomagnesemia affects insulin resistance and is a risk factor for diabetes mellitus type 2 (DM2) and gestational diabetes mellitus (GDM). Two single nucleotide polymorphisms (SNPs) in the epithelial magnesium channel TRPM6 (V(1393)I, K(1584)E) were predicted to confer susceptibility for DM2. Here, we show using patch clamp analysis and total internal reflection fluorescence microscopy, that insulin stimulates TRPM6 activity via a phosphoinositide 3-kinase and Rac1-mediated elevation of cell surface expression of TRPM6. Interestingly, insulin failed to activate the genetic variants TRPM6(V(1393)I) and TRPM6(K(1584)E), which is likely due to the inability of the insulin signaling pathway to phosphorylate TRPM6(T(1391)) and TRPM6(S(1583)). Moreover, by measuring total glycosylated hemoglobin (TGH) in 997 pregnant women as a measure of glucose control, we demonstrate that TRPM6(V(1393)I) and TRPM6(K(1584)E) are associated with higher TGH and confer a higher likelihood of developing GDM. The impaired response of TRPM6(V(1393)I) and TRPM6(K(1584)E) to insulin represents a unique molecular pathway leading to GDM where the defect is located in TRPM6.
Resumo:
At the research reactor Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) a new Prompt Gamma-ray Activation Analysis (PGAA) facility was installed. The instrument was originally built and operating at the spallation source at the Paul Scherrer Institute in Switzerland. After a careful re-design in 2004–2006, the new PGAA instrument was ready for operation at FRM II. In this paper the main characteristics and the current operation conditions of the facility are described. The neutron flux at the sample position can reach up 6.07×1010 [cm−2 s−1], thus the optimisation of some parameters, e.g. the beam background, was necessary in order to achieve a satisfactory analytical sensitivity for routine measurements. Once the optimal conditions were reached, detection limits and sensitivities for some elements, like for example H, B, C, Si, or Pb, were calculated and compared with other PGAA facilities. A standard reference material was also measured in order to show the reliability of the analysis under different conditions at this instrument.
Resumo:
Mutations in the plakoglobin (JUP) gene have been identified in arrhythmogenic right ventricular cardiomyopathy (ARVC) patients. However, the mechanisms underlying plakoglobin dysfunction involved in the pathogenesis of ARVC remain poorly understood. Plakoglobin is a component of both desmosomes and adherens junctions located at the intercalated disc (ICD) of cardiomyocytes, where it functions to link cadherins to the cytoskeleton. In addition, plakoglobin functions as a signaling protein via its ability to modulate the Wnt/beta-catenin signaling pathway. To investigate the role of plakoglobin in ARVC, we generated an inducible cardiorestricted knockout (CKO) of the plakoglobin gene in mice. Plakoglobin CKO mice exhibited progressive loss of cardiac myocytes, extensive inflammatory infiltration, fibrous tissue replacement, and cardiac dysfunction similar to those of ARVC patients. Desmosomal proteins from the ICD were decreased, consistent with altered desmosome ultrastructure in plakoglobin CKO hearts. Despite gap junction remodeling, plakoglobin CKO hearts were refractory to induced arrhythmias. Ablation of plakoglobin caused increase beta-catenin stabilization associated with activated AKT and inhibition of glycogen synthase kinase 3beta. Finally, beta-catenin/TCF transcriptional activity may contribute to the cardiac hypertrophy response in plakoglobin CKO mice. This novel model of ARVC demonstrates for the first time how plakoglobin affects beta-catenin activity in the heart and its implications for disease pathogenesis.
Resumo:
Epstein-Barr virus (EBV) is associated with several types of cancers including Hodgkin's lymphoma (HL) and nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane protein 1 (LMP1), a multifunctional oncoprotein, is a powerful activator of the transcription factor NF-κB, a property that is essential for EBV-transformed lymphoblastoid cell survival. Previous studies reported LMP1 sequence variations and induction of higher NF-κB activation levels compared to the prototype B95-8 LMP1 by some variants. Here we used biopsies of EBV-associated cancers and blood of individuals included in the Swiss HIV Cohort Study (SHCS) to analyze LMP1 genetic diversity and impact of sequence variations on LMP1-mediated NF-κB activation potential. We found that a number of variants mediate higher NF-κB activation levels when compared to B95-8 LMP1 and mapped three single polymorphisms responsible for this phenotype: F106Y, I124V and F144I. F106Y was present in all LMP1 isolated in this study and its effect was variant dependent, suggesting that it was modulated by other polymorphisms. The two polymorphisms I124V and F144I were present in distinct phylogenetic groups and were linked with other specific polymorphisms nearby, I152L and D150A/L151I, respectively. The two sets of polymorphisms, I124V/I152L and F144I/D150A/L151I, which were markers of increased NF-κB activation in vitro, were not associated with EBV-associated HL in the SHCS. Taken together these results highlighted the importance of single polymorphisms for the modulation of LMP1 signaling activity and demonstrated that several groups of LMP1 variants, through distinct mutational paths, mediated enhanced NF-κB activation levels compared to B95-8 LMP1.
Resumo:
PPARγ agonists [thiazolidinediones (TZDs)] are known to exert anti-fibrotic effects in the kidney. In addition, we previously demonstrated that sphingosine kinase 1 (SK-1) and intracellular sphingosine-1-phosphate (S1P), by reducing the expression of connective tissue growth factor (CTGF), have a protective role in the fibrotic process.
Resumo:
In chick embryo fibroblasts, the mRNA for extracellular matrix protein tenascin-C is induced 2-fold by cyclic strain (10%, 0.3 Hz, 6 h). This response is attenuated by inhibiting Rho-dependent kinase (ROCK). The RhoA/ROCK signaling pathway is primarily involved in actin dynamics. Here, we demonstrate its crucial importance in regulating tenascin-C expression. Cyclic strain stimulated RhoA activation and induced fibroblast contraction. Chemical activators of RhoA synergistically enhanced the effects of cyclic strain on cell contractility. Interestingly, tenascin-C mRNA levels perfectly matched the extent of RhoA/ROCK-mediated actin contraction. First, RhoA activation by thrombin, lysophosphatidic acid, or colchicine induced tenascin-C mRNA to a similar extent as strain. Second, RhoA activating drugs in combination with cyclic strain caused a super-induction (4- to 5-fold) of tenascin-C mRNA, which was again suppressed by ROCK inhibition. Third, disruption of the actin cytoskeleton with latrunculin A abolished induction of tenascin-C mRNA by chemical RhoA activators in combination with cyclic strain. Lastly, we found that myosin II activity is required for tenascin-C induction by cyclic strain. We conclude that RhoA/ROCK-controlled actin contractility has a mechanosensory function in fibroblasts that correlates directly with tenascin-C gene expression. Previous RhoA/ROCK activation, either by chemical or mechanical signals, might render fibroblasts more sensitive to external tensile stress, e.g., during wound healing.
Resumo:
PhIP carcinogenesis is initiated by N(2)-hydroxylation, mediated by several cytochromes P450, including CYP1A1. However, the role of CYP1A1 in PhIP metabolic activation in vivo is unclear. In this study, Cyp1a1-null and wild-type (WT) mice were used to investigate the potential role of CYP1A1 in PhIP metabolic activation in vivo. PhIP N(2)-hydroxylation was actively catalyzed by lung homogenates of WT mice, at a rate of 14.9 +/- 5.0 pmol/min/g tissue, but < 1 pmol/min/g tissue in stomach and small intestine, and almost undetectable in mammary gland and colon. PhIP N(2)-hydroxylation catalyzed by lung homogenates of Cyp1a1-null mice was approximately 10-fold lower than that of WT mice. In contrast, PhIP N(2)-hydroxylation activity in lung homogenates of Cyp1a2-null versus WT mice was not decreased. Pretreatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased lung Cyp1a1 mRNA and lung homogenate PhIP N(2)-hydroxylase activity approximately 50-fold in WT mice, where the activity was substantially inhibited (70%) by monoclonal antibodies against CYP1A1. In vivo, 30 min after oral treatment with PhIP, PhIP levels in lung were similar to those in liver. After a single dose of 0.1 mg/kg [(14)C]PhIP, lung PhIP-DNA adduct levels in Cyp1a1-null mice, but not in Cyp1a2-null mice, were significantly lower (P=0.0028) than in WT mice. These results reveal that mouse lung has basal and inducible PhIP N(2)-hydroxylase activity predominantly catalyzed by CYP1A1. Because of the high inducibility of human CYP1A1, especially in cigarette smokers, the role of lung CYP1A1 in PhIP carcinogenesis should be considered.
Resumo:
Chemokine processing by proteases is emerging as an important regulatory mechanism of leukocyte functions and possibly also of cancer progression. We screened a large panel of chemokines for degradation by cathepsins B and D, two proteases involved in tumor progression. Among the few substrates processed by both proteases, we focused on CCL20, the unique chemokine ligand of CCR6 that is expressed on immature dendritic cells and subtypes of memory lymphocytes. Analysis of the cleavage sites demonstrate that cathepsin B specifically cleaves off four C-terminally located amino acids and generates a CCL20(1-66) isoform with full functional activity. By contrast, cathepsin D totally inactivates the chemotactic potency of CCL20 by generating CCL20(1-55), CCL20(1-52), and a 12-aa C-terminal peptide CCL20(59-70). Proteolytic cleavage of CCL20 occurs also with chemokine bound to glycosaminoglycans. In addition, we characterized human melanoma cells as a novel CCL20 source and as cathepsin producers. CCL20 production was up-regulated by IL-1alpha and TNF-alpha in all cell lines tested, and in human metastatic melanoma cells. Whereas cathepsin D is secreted in the extracellular milieu, cathepsin B activity is confined to cytosol and cellular membranes. Our studies suggest that CCL20 processing in the extracellular environment of melanoma cells is exclusively mediated by cathepsin D. Thus, we propose a model where cathepsin D inactivates CCL20 and possibly prevents the establishment of an effective antitumoral immune response in melanomas.
Resumo:
One of the most important immunopathological consequence of intraperitoneal alveolar echinococcosis (AE) in the mouse is suppression of T cell-mediated immune responses. We investigated whether and how intraperitoneal macrophages (MØs) are, respectively, implicated as antigen-presenting cells (APCs). In a first step we showed that peritoneal MØs from infected mice (AE-MØs) exhibited a reduced ability to present a conventional antigen (chicken ovalbumin, C-Ova) to specific responder lymph node T cells. In a subsequent step, AE-MØs as well as naïve MØs (positive control) proved their ability to uptake and process C-Ova fluorescein isthiocyanate (FITC). Furthermore, in comparison with naïve MØs, the surface expression of Ia molecules was up-regulated on AE-MØs at the early stage of infection, suggesting that AE-MØs provide the first signal via the antigen-Ia complex. To study the accessory activity of MØs, AE-MØs obtained at the early and late stages of infection were found to decrease Con A-induced proliferation of peritoneal naïve T cells as well as of AE-sensitized peritoneal T cells, in contrast to stimulation with naïve MØs. The status of accessory molecules was assessed by analysing the expression level of costimulatory molecules on AE-MØs, with naïve MØs as controls. It was found that B7-1 (CD80) and B7-2 (CD86) expression remained unchanged, whereas CD40 was down-regulated and CD54 (= ICAM-1) was slightly up-regulated. In a leucocyte reaction of AE-MØs with naïve or AE-T cells, both types of T cells increased their proliferative response when CD28 - the ligand of B7 receptors - was exposed to anti-CD28 in cultures. Conversely to naïve MØs, pulsing of AE-MØs with agonistic anti-CD40 did not even partially restore their costimulatory activity and failed to increase naïve or AE-T cell proliferation. Neutralizing anti-B7-1, in combination with anti-B7-2, reduced naïve and AE-T cell proliferation, whereas anti-CD40 treatment of naïve MØs increased their proliferative response to Con A. These results point at the key role of B7 receptors as accessory molecules and the necessity of the integrity of CD40-expression by naïve MØs to improve their accessory activity. Taken together, the obstructed presenting-activity of AE-MØs appeared to trigger an unresponsiveness of T cells, contributing to the suppression of their clonal expansion during the chronic phase of AE-infection.
Resumo:
Monoterpenes, present in aromatic plants, are known to inhibit bone resorption in vivo. In this in vitro study, they inhibited the activation of osteoclasts only at high concentrations but inhibited the formation at much lower concentrations. Therefore, monoterpenes may act in vivo directly on osteoclastogenesis. INTRODUCTION: Monoterpenes are the major components of essential oils, which are formed in many plants. Typically, they are found in herbs and certain fruits. When fed to rats, they inhibit bone resorption by an unknown mechanism. In this study, their effect on the activity and formation of osteoclasts in vitro was studied. MATERIALS AND METHODS: The effect of monoterpenes on the development of osteoclasts was studied in co-cultures of bone marrow cells and osteoblasts and in cultures of spleen cells grown with colony stimulating factor (CSF)-1 and RANKL. In cultures of primary osteoblasts, alkaline phosphatase activity and levels of mRNA encoding RANKL and osteoprotegerin (OPG) mRNA (RT-PCR), and in osteoblast and spleen cell cultures, lactate dehydrogenase activity, a measure of toxicity, were determined. The activity of isolated rat osteoclasts was determined by counting the osteoclasts with actin rings using histofluorometry. RESULTS: The monoterpenes inhibited the formation of osteoclasts more strongly in co-cultures (> or = 1 microM) than in cultures of spleen cells (> or = 10 microM). They had a minor effect on osteoblasts. Toxic effects were not observed. The inhibition of the formation of osteoclasts was not reversed by the addition of farnesol and geranylgeraniol, excluding an effect of the monoterpenes through the mevalonate pathway. A high concentration of 1 mM was required to inhibit the activation of osteoclasts. This effect, shown for menthol and borneol, was reversible. CONCLUSIONS: The results suggest that the monoterpenes inhibit bone resorption in vivo through a direct effect on the formation of osteoclasts acting mainly on the hemopoietic cells.
Resumo:
Glycoprotein (GP) VI, the primary collagen receptor on platelets, has been shown to have variable expression, possibly as a consequence of immune modulation. The present study was designed to determine the mechanism by which GP VI clearance occurs. We found that direct activation of GP VI both by a GP VI-specific antibody and by GP VI ligands (collagen and convulxin) reduced binding of biotinylated convulxin to the stimulated platelets. Analysis of immunoblots of platelets and supernatants showed that the stimulated platelets contained less GP VI, while the soluble fraction contained a 57-kDa cleavage product. Stimulation of platelets with PAR-1 agonists (TRAP peptide and thrombin) also caused GP VI cleavage, although the amount of GP VI loss was less than that observed with direct GP VI ligands. The metalloproteinase (MMP) inhibitors GM6001 and TAPI prevented both the clearance of GP VI from the platelet surface and the appearance of the soluble cleavage product. Induction of GP VI cleavage caused specific down-regulation of collagen-induced platelet aggregation, providing a mechanism for the modulation of platelet responsiveness to this important platelet agonist.