43 resultados para C(4X4) RECONSTRUCTION
Resumo:
OBJECT: The aim of our study was to demonstrate the image quality of the new device using human cadavers, extending the horizon of available imaging modalities in forensic medicine. MATERIALS AND METHODS: Six human cadavers were examined, revealing C-arm data sets of the head, neck thorax, abdomen and pelvis. High-resolution mode was performed with 500 fluoroscopy shots during a 190 degrees orbital movement with a constant tube voltage of 100 kV and a current of 4.6 mA. Based on these data sets subsequent three-dimensional reconstructions were generated. RESULTS: Reconstructed data sets revealed high-resolution images of all skeletal structures in a near-CT quality. The same image quality was available in all reconstruction planes. Artefacts caused by restorative dental materials are less accentuated in CBCT data sets. The system configuration was not powerful enough to generate sufficient images of intracranial structures. CONCLUSION: After the here-demonstrated encouraging preliminary results, the forensic indications that would be suitable for imaging with a 3D C-arm have to be defined. Promising seems the visualization local limited region of interest as the cervical spine or the facial skeleton.
Resumo:
The alveolated structure of the pulmonary acinus plays a vital role in gas exchange function. Three-dimensional (3D) analysis of the parenchymal region is fundamental to understanding this structure-function relationship, but only a limited number of attempts have been conducted in the past because of technical limitations. In this study, we developed a new image processing methodology based on finite element (FE) analysis for accurate 3D structural reconstruction of the gas exchange regions of the lung. Stereologically well characterized rat lung samples (Pediatr Res 53: 72-80, 2003) were imaged using high-resolution synchrotron radiation-based X-ray tomographic microscopy. A stack of 1,024 images (each slice: 1024 x 1024 pixels) with resolution of 1.4 mum(3) per voxel were generated. For the development of FE algorithm, regions of interest (ROI), containing approximately 7.5 million voxels, were further extracted as a working subunit. 3D FEs were created overlaying the voxel map using a grid-based hexahedral algorithm. A proper threshold value for appropriate segmentation was iteratively determined to match the calculated volume density of tissue to the stereologically determined value (Pediatr Res 53: 72-80, 2003). The resulting 3D FEs are ready to be used for 3D structural analysis as well as for subsequent FE computational analyses like fluid dynamics and skeletonization.
Resumo:
Annually laminated (varved) sediments of proglacial Lake Silvaplana (46 ̊27’N, 9 ̊48’E, 1791 m a.s.l., Engadine, eastern Swiss Alps) provide an excellent archive for quantitative high-resolution (seasonal – annual) reconstruction of high- and lowfrequency climate signals back to AD 1580. The chronology of the core is based on varve counting, Cs-137, Pb-210 and event stratigraphy. In this study we present a reconstruction based on in-situ reflectance spectroscopy. In situ reflectance spectroscopy is known as a cost- and time-effective non destructtive method for semi-quantitative analysis of pigments (e.g., chlorines and carotenoids) and of lithoclastic sediment fractions. Reflectance-dependent absorption (RDA) was measured with a Gretac Macbeth spectrolino at 2 mm resolution. The spectral coverage ranges from 380 nm to 730 nm at 10 nm band resolution. In proglacial Lake Silvaplana, 99% of the sediment is lithoclastic prior to AD 1950. Therefore, we concentrate on absorption features that are characteristic for lithoclastic sediment fractions. In Lake Silvaplana, two significant correlations that are stable in time were found between RDA typical for lithoclastics and meteorological data: (1) the time series R 570 /R 630 (ratio between RDA at 570 nm and 630 nm) of varves in Lake Silvaplana and May to October temperatures at nearby station of Sils correlate highly significantly (calibration period AD 1864 – 1951, r = 0.74, p < 0.01 for 5ptsmoothed series; RMSE is 0.28 ̊C, RE = 0.41 and CE = 0.38), and (2) the minimum reflectance within the 690nm band (min690) data correlate with May to October (calibration period AD 1864 – 1951, r = 0.68, p < 0.01 for 5pt-smoothed series; RMSE = 0.22 ̊C, RE = 0.5, CE = 0.31). Both proxy series (min690nm and R 570 /R 630 values) are internally highly consistent (r = 0.8, p < 0.001). In proglacial Lake Silvaplana the largest amount of sediment is transported by glacial meltwater. The melting season spans approximately from May to October, which gives us a good understanding of the geophysical processes explaining the correlations between lithoclastic proxies and the meteorological data. The reconstructions were extended back to AD 1580 and show a broad corresponddence with fully independent reconstructions from tree rings and documentary data.
Resumo:
INTRODUCTION: Ruptures of the anterior cruciate ligament are being diagnosed with increasing frequency in skeletally immature individuals. It was our aim to investigate the graft remodelling process following an autologous, transphyseal reconstruction of the anterior cruciate ligament (ACL) in skeletally immature sheep. We hypothesized that the ligamentisation process in immature sheep is quicker and more complete when compared to adult sheep. MATERIALS AND METHODS: Skeletally immature sheep with an age of 4 months underwent a fully transphyseal ACL reconstruction using an autologous tendon. The animals were subsequently sacrificed at 3, 6, 12 and 24 weeks following surgery. Each group was characterised histomorphometrically, by immunostaining (VEGF, SMA), by transmission electron microscopy (TEM) and biomechanically (UFS Roboter). RESULTS: The histomorphometric analysis and presence of VEGF and SMA positive cells demonstrated a rapid return to a ligament like structure. The biomechanical analysis revealed an anteroposterior translation that was still increased even 6 months following surgery. CONCLUSION: As in adult sheep models, the remodeling of a soft tissue graft used for ACL reconstruction results in a biomechanically inferior substitute. However, the immature tissue seems to remodel faster and more complete when compared to adults.
Resumo:
A lack of quantitative high resolution paleoclimate data from the Southern Hemisphere limits the ability to examine current trends within the context of long-term natural climate variability. This study presents a temperature reconstruction for southern Tasmania based on analyses of a sediment core from Duckhole Lake (43.365°S, 146.875°E). The relationship between non-destructive whole core scanning reflectance spectroscopy measurements in the visible spectrum (380–730 nm) and the instrumental temperature record (ad 1911–2000) was used to develop a calibration-in-time reflectance spectroscopy-based temperature model. Results showed that a trough in reflectance from 650 to 700 nm, which represents chlorophyll and its derivatives, was significantly correlated to annual mean temperature. A calibration model was developed (R = 0.56, p auto < 0.05, root mean squared error of prediction (RMSEP) = 0.21°C, five-year filtered data, calibration period 1911–2000) and applied down-core to reconstruct annual mean temperatures in southern Tasmania over the last c. 950 years. This indicated that temperatures were initially cool c. ad 1050, but steadily increased until the late ad 1100s. After a brief cool period in the ad 1200s, temperatures again increased. Temperatures steadily decreased during the ad 1600s and remained relatively stable until the start of the 20th century when they rapidly decreased, before increasing from ad 1960s onwards. Comparisons with high resolution temperature records from western Tasmania, New Zealand and South America revealed some similarities, but also highlighted differences in temperature variability across the mid-latitudes of the Southern Hemisphere. These are likely due to a combination of factors including the spatial variability in climate between and within regions, and differences between records that document seasonal (i.e. warm season/late summer) versus annual temperature variability. This highlights the need for further records from the mid-latitudes of the Southern Hemisphere in order to constrain past natural spatial and seasonal/annual temperature variability in the region, and to accurately identify and attribute changes to natural variability and/or anthropogenic activities.
Resumo:
This paper examines the impact of disastrous and ‘ordinary’ floods on human societies in what is now Austria. The focus is on urban areas and their neighbourhoods. Examining institutional sources such as accounts of the bridge masters, charters, statutes and official petitions, it can be shown that city communities were well acquainted with this permanent risk: in fact, an office was established for the restoration of bridges and the maintenance of water defences and large depots for timber and water pipes ensured that the reconstruction of bridges and the system of water supply could start immediately after the floods had subsided. Carpenters and similar groups gained 10 to 20 per cent of their income from the repair of bridges and other flood damage. The construction of houses in endangered zones was adapted in order to survive the worst case experiences. Thus, we may describe those communities living along the central European rivers as ‘cultures of flood management’. This special knowledge vanished, however, from the mid-nineteenth century onwards, when river regulations gave the people a false feeling of security.
Resumo:
Abstract. Here we present stable isotope data from three sediment records from lakes that lie along the Macedonian- Albanian border (Lake Prespa: 1 core, and Lake Ohrid: 2 cores). The records only overlap for the last 40 kyr, although the longest record contains the MIS 5/6 transition (Lake Ohrid). The sedimentary characteristics of both lakes differ significantly between the glacial and interglacial phases. At the end of MIS 6 Lake Ohrid’s water level was low (high �18Ocalcite) and, although productivity was increasing (high calcite content), the carbon supply was mainly from inorganic catchment rock sources (high �13Ccarb). During the last interglacial, calcite and TOC production and preservation increased, progressively lower �18Ocalcite suggest increase in humidity and lake levels until around 115 ka. During ca. 80 ka to 11 ka the lake records suggest cold conditions as indicated by negligible calcite precipitation and low organic matter content. In Lake Ohrid, �13Corg are complacent; in contrast, Lake Prespa shows consistently higher �13Corg suggesting a low oxidation of 13C-depleted organic matter in agreement with a general deterioration of climate conditions during the glacial. From 15 ka to the onset of the Holocene, calcite and TOC begin to increase, suggesting lake levels were probably low (high �18Ocalcite). In the Holocene (11 ka to present) enhanced productivity is manifested by high calcite and organic matter content. All three cores show an early Holocene characterised by low �18Ocalcite, apart from the very early Holocene phase in Prespa where the lowest �18Ocalcite occurs at ca. 7.5 ka, suggesting a phase of higher lake level only in (the more sensitive) Lake Prespa. From 6 ka, �18Ocalcite suggest progressive aridification, in agreement with many other records in the Mediterranean, although the uppermost sediments in one core records low �18Ocalcite which we interpret as a result of human activity. Overall, the isotope data present here confirm that these two big lakes have captured the large scale, low frequency palaeoclimate variation that is seen in Mediterranean lakes, although in detail there is much palaeoclimate information that could be gained, especially small scale, high frequency differences between this region and the Mediterranean.
Resumo:
The reconstruction of the stable carbon isotope evolution in atmospheric CO2 (δ13Catm), as archived in Antarctic ice cores, bears the potential to disentangle the contributions of the different carbon cycle fluxes causing past CO2 variations. Here we present a new record of δ13Catm before, during and after the Marine Isotope Stage 5.5 (155 000 to 105 000 yr BP). The dataset is archived on the data repository PANGEA® (www.pangea.de) under 10.1594/PANGAEA.817041. The record was derived with a well established sublimation method using ice from the EPICA Dome C (EDC) and the Talos Dome ice cores in East Antarctica. We find a 0.4‰ shift to heavier values between the mean δ13Catm level in the Penultimate (~ 140 000 yr BP) and Last Glacial Maximum (~ 22 000 yr BP), which can be explained by either (i) changes in the isotopic composition or (ii) intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii) by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 yr, but with different phasing and magnitudes. Furthermore, a 5000 yr lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS5.5 (120 000 yr BP). Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.
Resumo:
PURPOSE To determine the image quality of an iterative reconstruction (IR) technique in low-dose MDCT (LDCT) of the chest of immunocompromised patients in an intraindividual comparison to filtered back projection (FBP) and to evaluate the dose reduction capability. MATERIALS AND METHODS 30 chest LDCT scans were performed in immunocompromised patients (Brilliance iCT; 20-40 mAs; mean CTDIvol: 1.7 mGy). The raw data were reconstructed using FBP and the IR technique (iDose4™, Philips, Best, The Netherlands) set to seven iteration levels. 30 routine-dose MDCT (RDCT) reconstructed with FBP served as controls (mean exposure: 116 mAs; mean CDTIvol: 7.6 mGy). Three blinded radiologists scored subjective image quality and lesion conspicuity. Quantitative parameters including CT attenuation and objective image noise (OIN) were determined. RESULTS In LDCT high iDose4™ levels lead to a significant decrease in OIN (FBP vs. iDose7: subscapular muscle 139.4 vs. 40.6 HU). The high iDose4™ levels provided significant improvements in image quality and artifact and noise reduction compared to LDCT FBP images. The conspicuity of subtle lesions was limited in LDCT FBP images. It significantly improved with high iDose4™ levels (> iDose4). LDCT with iDose4™ level 6 was determined to be of equivalent image quality as RDCT with FBP. CONCLUSION iDose4™ substantially improves image quality and lesion conspicuity and reduces noise in low-dose chest CT. Compared to RDCT, high iDose4™ levels provide equivalent image quality in LDCT, hence suggesting a potential dose reduction of almost 80%.
Resumo:
During the last glacial cycle, Greenland temperature showed many rapid temperature variations, the so-called Dansgaard–Oeschger (DO) events. The past atmospheric methane concentration closely followed these temperature variations, which implies that the warmings recorded in Greenland were probably hemispheric in extent. Here we substantially extend and complete the North Greenland Ice Core Project (NGRIP) methane record from the Preboreal Holocene (PB) back to the end of the last interglacial period with a mean time resolution of 54 yr. We relate the amplitudes of the methane increases associated with DO events to the amplitudes of the local Greenland NGRIP temperature increases derived from stable nitrogen isotope (δ15N) measurements, which have been performed along the same ice core (Kindler et al., 2014). We find the ratio to oscillate between 5 parts per billion (ppb) per °C and 18 ppb °C−1 with the approximate frequency of the precessional cycle. A remarkably high ratio of 25.5 ppb °C−1 is reached during the transition from the Younger Dryas (YD) to the PB. Analysis of the timing of the fast methane and temperature increases reveals significant lags of the methane increases relative to NGRIP temperature for DO events 5, 9, 10, 11, 13, 15, 19, and 20. These events generally have small methane increase rates and we hypothesize that the lag is caused by pronounced northward displacement of the source regions from stadial to interstadial. We further show that the relative interpolar concentration difference (rIPD) of methane is about 4.5% for the stadials between DO events 18 and 20, which is in the same order as in the stadials before and after DO event 2 around the Last Glacial Maximum. The rIPD of methane remains relatively stable throughout the full last glacial, with a tendency for elevated values during interstadial compared to stadial periods.