416 resultados para Braun, Lily.
Resumo:
We conducted an explorative, cross-sectional, multi-centre study in order to identify the most common problems of people with any kind of (primary) sleep disorder in a clinical setting using the International Classification of Functioning, Disability and Health (ICF) as a frame of reference. Data were collected from patients using a structured face-to-face interview of 45-60 min duration. A case record form for health professionals containing the extended ICF Checklist, sociodemographic variables and disease-specific variables was used. The study centres collected data of 99 individuals with sleep disorders. The identified categories include 48 (32%) for body functions, 13 (9%) body structures, 55 (37%) activities and participation and 32 (22%) for environmental factors. 'Sleep functions' (100%) and 'energy and drive functions', respectively, (85%) were the most severely impaired second-level categories of body functions followed by 'attention functions' (78%) and 'temperament and personality functions' (77%). With regard to the component activities and participation, patients felt most restricted in the categories of 'watching' (e.g. TV) (82%), 'recreation and leisure' (75%) and 'carrying out daily routine' (74%). Within the component environmental factors the categories 'support of immediate family', 'health services, systems and policies' and 'products or substances for personal consumption [medication]' were the most important facilitators; 'time-related changes', 'light' and 'climate' were the most important barriers. The study identified a large variety of functional problems reflecting the complexity of sleep disorders. The ICF has the potential to provide a comprehensive framework for the description of functional health in individuals with sleep disorders in a clinical setting.
Resumo:
The purpose of this study was to determine the role of saliva-derived biomarkers and periodontal pathogens during periodontal disease progression (PDP). One hundred human participants were recruited into a 12-month investigation. They were seen bi-monthly for saliva and clinical measures and bi-annually for subtraction radiography, serum and plaque biofilm assessments. Saliva and serum were analyzed with protein arrays for 14 pro-inflammatory and bone turnover markers, while qPCR was used for detection of biofilm. A hierarchical clustering algorithm was used to group study participants based on clinical, microbiological, salivary/serum biomarkers, and PDP. Eighty-three individuals completed the six-month monitoring phase, with 39 [corrected] exhibiting PDP, while 44 [corrected] demonstrated stability. Participants assembled into three clusters based on periodontal pathogens, serum and salivary biomarkers. Cluster 1 members displayed high salivary biomarkers and biofilm; 71% [corrected] of these individuals were undergoing PDP. Cluster 2 members displayed low biofilm and biomarker levels; 76% [corrected] of these individuals were stable. Cluster 3 members were not discriminated by PDP status; however, cluster stratification followed groups 1 and 2 based on thresholds of salivary biomarkers and biofilm pathogens. The association of cluster membership to PDP was highly significant (p < 0.0007). [corrected] The use of salivary and biofilm biomarkers offers potential for the identification of PDP or stability (ClinicalTrials.gov number, CT00277745).
Resumo:
Energy efficiency is a major concern in the design of Wireless Sensor Networks (WSNs) and their communication protocols. As the radio transceiver typically accounts for a major portion of a WSN node’s power consumption, researchers have proposed Energy-Efficient Medium Access (E2-MAC) protocols that switch the radio transceiver off for a major part of the time. Such protocols typically trade off energy-efficiency versus classical quality of service parameters (throughput, latency, reliability). Today’s E2-MAC protocols are able to deliver little amounts of data with a low energy footprint, but introduce severe restrictions with respect to throughput and latency. Regrettably, they yet fail to adapt to varying traffic load at run-time. This paper presents MaxMAC, an E2-MAC protocol that targets at achieving maximal adaptivity with respect to throughput and latency. By adaptively tuning essential parameters at run-time, the protocol reaches the throughput and latency of energy-unconstrained CSMA in high-traffic phases, while still exhibiting a high energy-efficiency in periods of sparse traffic. The paper compares the protocol against a selection of today’s E2-MAC protocols and evaluates its advantages and drawbacks.
Resumo:
We propose a novel methodology to generate realistic network flow traces to enable systematic evaluation of network monitoring systems in various traffic conditions. Our technique uses a graph-based approach to model the communication structure observed in real-world traces and to extract traffic templates. By combining extracted and user-defined traffic templates, realistic network flow traces that comprise normal traffic and customized conditions are generated in a scalable manner. A proof-of-concept implementation demonstrates the utility and simplicity of our method to produce a variety of evaluation scenarios. We show that the extraction of templates from real-world traffic leads to a manageable number of templates that still enable accurate re-creation of the original communication properties on the network flow level.