17 resultados para Boyle, Judy
Resumo:
Aims To explore the impact of the functional severity of coronary artery stenosis on changes in myocardial oxygenation during pharmacological vasodilation, using oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) imaging and invasive fractional flow reserve (FFR). An FFR is considered a standard of reference for assessing haemodynamic relevance of coronary artery stenosis; yet, the relationship of FFR to changes in myocardial oxygenation during vasodilator stress and thus to an objective marker for ischaemia on the tissue level is not well understood. Methods and results We prospectively recruited 64 patients with suspected/known coronary artery disease undergoing invasive angiography. The FFR was performed in intermediate coronary artery stenosis. OS-CMR images were acquired using a T2*-sensitive sequence before and after adenosine-induced vasodilation, with myocardial segments matched to angiography. Very strict image quality criteria were defined to ensure the validity of results. The FFR was performed in 37 patients. Because of the strict image quality criteria, 41% of segments had to be excluded, leaving 29/64 patients for the blinded OS-CMR analysis. Coronary territories with an associated FFR of <0.80 showed a lack of increase in myocardial oxygenation [mean signal intensity (ΔSI) −0.49%; 95% confidence interval (CI) −3.78 to 2.78 vs. +7.30%; 95% CI 4.08 to 10.64; P < 0.001]. An FFR of <0.54 best predicted a complete lack of a vasodilator-induced oxygenation increase (sensitivity 71% and specificity 75%). An OS-CMR ΔSI <4.78% identified an FFR of <0.8 with a sensitivity of 86% and specificity of 92%. Conclusion An FFR of <0.80 is associated with a lack of an adenosine-inducible increase in oxygenation of the dependent coronary territory, while a complete lack of such an increase was best predicted by an FFR of <0.54. Further studies are warranted to identify clinically meaningful cut-off values for FFR measurements and to assess the utility of OS-CMR as an alternative clinical tool for assessing the functional relevance of coronary artery stenosis.
Resumo:
OBJECTIVE This study presents the first in vivo real-time optical tissue characterization during image-guided percutaneous intervention using near-infrared diffuse optical spectroscopy sensing at the tip of a needle. The goal of this study was to indicate transition boundaries from healthy tissue to tumors, namely, hepatic carcinoma, based on the real-time feedback derived from the optical measurements. MATERIALS AND METHODS Five woodchucks with hepatic carcinoma were used for this study. The woodchucks were imaged with contrast-enhanced cone beam computed tomography with a flat panel detector C-arm system to visualize the carcinoma in the liver. In each animal, 3 insertions were performed, starting from the skin surface toward the hepatic carcinoma under image guidance. In 2 woodchucks, each end point of the insertion was confirmed with pathologic examination of a biopsy sample. While advancing the needle in the animals under image guidance such as fluoroscopy overlaid with cone beam computed tomography slice and ultrasound, optical spectra were acquired at the distal end of the needles. Optical tissue characterization was determined by translating the acquired optical spectra into clinical parameters such as blood, water, lipid, and bile fractions; tissue oxygenation levels; and scattering amplitude related to tissue density. The Kruskal-Wallis test was used to study the difference in the derived clinical parameters from the measurements performed within the healthy tissue and the hepatic carcinoma. Kurtoses were calculated to assess the dispersion of these parameters within the healthy and carcinoma tissues. RESULTS Blood and lipid volume fractions as well as tissue oxygenation and reduced scattering amplitude showed to be significantly different between the healthy part of the liver and the hepatic carcinoma (P < 0.05) being higher in normal liver tissue. A decrease in blood and lipid volume fractions and tissue oxygenation as well as an increase in scattering amplitude were observed when the tip of the needle crossed the margin from the healthy liver tissue to the carcinoma. The kurtosis for each derived clinical parameter was high in the hepatic tumor as compared with that in the healthy liver indicating intracarcinoma variability. CONCLUSIONS Tissue blood content, oxygenation level, lipid content, and tissue density all showed significant differences when the needle tip was guided from the healthy tissue to the carcinoma and can therefore be used to identify tissue boundaries during percutaneous image-guided interventions.