89 resultados para Blood-vessels


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The factors that influence Leydig cell activity currently include peptides such as neuropeptide Y (NPY). In this work we investigated the ability of this compound, injected directly into the testes of adult male rats, to alter testosterone (T) release into the general circulation. At a 5μg/kg dose administered 1h prior to challenge with human chorionic gonadotropin (hCG, 1.0 U/kg, iv), NPY significantly (P<0.01) blunted the T response to this gonadotropin. The inhibitory effect of NPY was observed in animals pretreated with an antagonist to gonadotropin-releasing hormone or not, indicating that the decrease in plasma T found was most likely independent of pituitary luteinizing hormone. However, testicular levels of steroidogenic acute regulatory (STAR) protein or translocator protein (TSPO) in the Leydig cells did not exhibit consistent changes, which suggested that other mechanisms mediated the blunted T response to hCG. We therefore used autoradiography and immunohistochemistry methodologies to identify NPY receptors in the testes, and found them primarily located on blood vessels. Competition studies further identified these receptors as being Y(1), a subtype previously reported to modulate the vasoconstrictor effect of NPY. The absence of significant changes in STAR and TSPO levels, as well as the absence of Y(1) receptors on Leydig cells, suggest that NPY-induced decreases in T release is unlikely to represent a direct effect of NPY on these cells. Rather, the very high expression levels of Y(1) found in testicular vessels supports the concept that NPY may alter gonadal activity, at least in part, through local vascular impairment of gonadotropin delivery to, and/or blunted T secretion from, Leydig cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although the physiological and pharmacological evidences suggest a role for angiotensin II (Ang II) with the mammalian heart, the source and precise location of Ang II are unknown. To visualize and quantitate Ang II in atria, ventricular walls and interventricular septum of the rat and human heart and to explore the feasibility of local Ang II production and function, we investigated by different methods the expression of proteins involved in the generation and function of Ang II. We found mRNA of angiotensinogen (Ang-N), of angiotensin converting enzyme, of the angiotensin type receptors AT(1A) and AT(2) (AT(1B) not detected) as well as of cathepsin D in any part of the hearts. No renin mRNA was traceable. Ang-N mRNA was visualized by in situ hybridization in atrial ganglial neurons. Ang II and dopamine- -hydroxylase (D H) were either colocalized inside the same neuronal cell or the neurons were specialized for Ang II or D H. Within these neurons, the vesicular acetylcholine transporter (VAChT) was neither colocalized with Ang II nor D H, but VAChT-staining was found with synapses en passant encircle these neuronal cells. The fibers containing Ang II exhibited with blood vessels and with cardiomyocytes supposedly angiotensinergic synapses en passant. In rat heart, right atrial median Ang II concentration appeared higher than septal and ventricular Ang II. The distinct colocalization of neuronal Ang II with D H in the heart may indicate that Ang II participates together with norepinephrine in the regulation of cardiac functions: Produced as a cardiac neurotransmitter Ang II may have inotropic, chronotropic or dromotropic effects in atria and ventricles and contributes to blood pressure regulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

All preparation efforts of biological samples in electron microscopy are focused to preserve structures as close as possible to the native state. To achieve this goal with tissues, it is of advantage to have a very short time between excision and fixation. The most common approach is chemical fixation: cross-linking of the tissue samples with aldehydes followed by postfixation with osmium tetroxide. Here, the fastest approach for tissue samples is perfusion. However, the diffusion of the fixation solution from blood vessels into the depth of the tissue is still slow and does not allow an overall instant fixation of a single cell. As a result, osmotic effects become evident (swelling or shrinkage of cell organelles). Another possibility is to take a tissue sample from the experimental animal. Excision of tissue can last quite some time, which results in even more pronounced autolytic induced osmotic effects. Furthermore, the animal does not survive the procedure in most cases. Alternatively, microbiopsies are an elegant technique to rapidly excise small quantities of tissue. Some tissues, such as liver and muscle, may be obtained using a non-lethal approach. To avoid the artifacts introduced by chemical fixation, high-pressure freezing of microbiopsies (brain, liver, kidney, and muscle) is a powerful alternative to chemical fixation. Here, we describe the microbiopsy method, and high-pressure freezing/freeze-substitution (HPF/FS) as a follow-up procedure. Cryosectioning of high-pressure frozen samples is optimally preserving the ultrastructure; however, it is not considered to be a routine approach yet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In development, tissue regeneration or certain diseases, angiogenic growth leads to the expansion of blood vessels and the lymphatic vasculature. This involves endothelial cell proliferation as well as angiogenic sprouting, in which a subset of cells, termed tip cells, acquires motile, invasive behaviour and extends filopodial protrusions. Although it is already appreciated that angiogenesis is triggered by tissue-derived signals, such as vascular endothelial growth factor (VEGF) family growth factors, the resulting signalling processes in endothelial cells are only partly understood. Here we show with genetic experiments in mouse and zebrafish that ephrin-B2, a transmembrane ligand for Eph receptor tyrosine kinases, promotes sprouting behaviour and motility in the angiogenic endothelium. We link this pro-angiogenic function to a crucial role of ephrin-B2 in the VEGF signalling pathway, which we have studied in detail for VEGFR3, the receptor for VEGF-C. In the absence of ephrin-B2, the internalization of VEGFR3 in cultured cells and mutant mice is defective, which compromises downstream signal transduction by the small GTPase Rac1, Akt and the mitogen-activated protein kinase Erk. Our results show that full VEGFR3 signalling is coupled to receptor internalization. Ephrin-B2 is a key regulator of this process and thereby controls angiogenic and lymphangiogenic growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laser tissue soldering (LTS) is a promising technique for tissue fusion based on a heat-denaturation process of proteins. Thermal damage of the fused tissue during the laser procedure has always been an important and challenging problem. Particularly in LTS of arterial blood vessels strong heating of the endothelium should be avoided to minimize the risk of thrombosis. A precise knowledge of the temperature distribution within the vessel wall during laser irradiation is inevitable. The authors developed a finite element model (FEM) to simulate the temperature distribution within blood vessels during LTS. Temperature measurements were used to verify and calibrate the model. Different parameters such as laser power, solder absorption coefficient, thickness of the solder layer, cooling of the vessel and continuous vs. pulsed energy deposition were tested to elucidate their impact on the temperature distribution within the soldering joint in order to reduce the amount of further animal experiments. A pulsed irradiation with high laser power and high absorbing solder yields the best results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intussusception is an alternative to the sprouting mode of angiogenesis. The advantage of this mechanism of vascular growth is that blood vessels are generated more rapidly and the capillaries thereby formed are less leaky. This review article summarizes our current knowledge concerning the role played by intussusceptive microvascular growth in tumor growth. Interestingly, an angiogenic switch from sprouting to intussusceptive angiogenesis occurs after treatment with angiogenesis inhibitors and may be considered as a tumor-protective adaptative response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied development of the ostrich lung using light microscopy as well as electron microscopy techniques. At E24, the lung comprised a few epithelial tubes, interspersed with abundant mesenchyme with scattered profiles of incipient blood vessels. Between E24 and E39, the epithelial thickness was reduced by 90% from 13.5 ± 0.41 μm to 1.33 ± 0.014 μm (mean ± SD, respectively). Atria were evident at E32, and by E35, the first portions of the blood-gas barrier (BGB) measuring 3.41 ± 1.12 μm were encountered. Gas exchange tissue was well formed by E39 with atria, infundibulae, air capillaries and a mature blood-gas barrier (BGB). BGB formation proceeded through the complex processes of secarecytosis and peremerecytosis, which entailed decapitation of epithelial cells by cutting or pinching off respectively and by E39, the BGB was thin at 2.21 ± 1.21 μm. Vascular remodeling by intussusceptive angiogenesis was a late stage process mediated by intraluminal pillars in the pulmonary vasculature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

NPY receptors represent novel molecular therapeutic targets in cancer and obesity. However, the extent of NPY receptor expression in normal human tissues is poorly investigated. Based on the role of NPY in reproductive functions, the NPY receptor expression was studied in 25 normal human testes and, additionally, 24 testicular tumors using NPY receptor autoradiography. In the normal testis, Leydig cells strongly expressed NPY receptor subtype Y2, and small arterial blood vessels Y1. Y2 receptors were found to be functional with agonist-stimulated [(35)S]GTPγS binding autoradiography. Full functional integrity of the NPY system was further suggested by the immunohistochemical detection of NPY peptide in nerve fibers directly adjacent to Leydig cells and arteries. Germ cell tumors expressed Y1 and Y2 on tumor cells in 33% and Y1 on intratumoral blood vessels in 50%. Based on its strong NPY receptor expression in Leydig cells and blood vessels, the normal human testis represents a potentially important physiological and pharmalogical NPY target.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is accumulating evidence for the involvement of the unfolded protein response (UPR) in the pathogenesis of many tumor types in humans. This is particularly the case in rapidly growing solid tumors in which the demand for oxygen and nutrients can exceed the supply until new tumor-initiated blood vessels are formed. In contrast, the role of the UPR during leukemogenesis remains largely unknown. Acute myeloid leukemia (AML) is a genetically heterogeneous clonal disorder characterized by the accumulation of somatic mutations in hematopoietic progenitor cells that alter the physiological regulation of self-renewal, survival, proliferation, or differentiation. The CCAAT/enhancer-binding protein alpha (CEBPA) gene is a key myeloid transcription factor and a frequent target for disruption in AML. In particular, translation of CEBPA mRNA can be specifically blocked by binding of the chaperone calreticulin (CALR), a well-established effector of the UPR, to a stem loop structure within the 5' region of the CEBPA mRNA. The relevance of this mechanism was first elucidated in certain AML subtypes carrying the gene rearrangements t(3;21) or inv(16). In our recent work, we could demonstrate the induction of key effectors of the UPR in leukemic cells of AML patients comprising all subtypes (according to the French-American-British (FAB) classification for human AML). The formation of the spliced variant of the X-box binding protein (XBP1s) was detectable in 17.4% (17 of 105) of AML patients. Consistent with an activated UPR, this group had significantly increased expression of the UPR target genes CALR, the 78 kDa glucose-regulated protein (GRP78), and the CCAAT/enhancer-binding protein homologous protein (CHOP). Consistently, in vitro studies confirmed that calreticulin expression was upregulated via activation of the ATF6 pathway in myeloid leukemic cells. As a consequence, CEBPA protein expression was inhibited in vitro as well as in leukemic cells from patients with activated UPR. We therefore propose a model of the UPR being involved in leukemogenesis through induction of calreticulin along the ATF6 pathway, thereby ultimately suppressing CEBPA translation and contributing to the block in myeloid differentiation and cell-cycle deregulation which represent key features of the leukemic phenotype. From a more clinical point of view, the presence of activated UPR in AML patient samples was found to be associated with a favorable disease course.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The evaluation of the hepatic parenchyma in patients with chronic liver disease is important to assess the extension, localization and relationship with adjacent anatomical structures of possible lesions. This is usually performed with conventional abdominal ultrasound, CT-scan or magnetic resonance imaging. In this context, the feasibility and the safety of intravascular ultrasound in the liver have not been assessed yet. Methods We tested the safety and performance of an intracardiac echography (ICE) catheter applied by a transjugular approach into the hepatic veins in patients with chronic liver disease undergoing hepatic hemodynamic measurements. Results Five patients were enrolled in this pilot study. The insertion of the ICE catheter was possible into the right and middle, but not into the left hepatic vein. The position of the ICE was followed using fluoroscopy and external conventional ultrasound. Accurate imaging of focal hepatic parenchymal lesions, Doppler ultrasound of surrounding blood vessels and assessment of liver surface and ascites were achieved without complications. Conclusions This study demonstrated that a diagnostic approach using an ICE device inserted in the hepatic veins is feasible, safe and well tolerated. However, it remains for the moment only an experimental investigative tool. Whether ICE adds further information regarding parenchymal lesions and associated vascular alterations as compared to other techniques, needs additional investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The intervertebral disc (IVD) is a complex avascular organ of viscoelastic properties. The current research focus is to regenerate and to partially restore a degenerated IVD by ‘smart’ biomaterials in combination of cell therapy and/or growth factors. For the two tissues of the IVD, that is, the nucleus pulposus (NP) and the annulus fibrosus (AF), biomaterials of different mechanical properties are needed. The ideal biomaterial to restore the water-rich NP and the tensile-force resistant AF has not been identified yet. The lack of blood vessels and the relative scarcity of specially adapted cells of the IVD organ demand novel concepts of tissue-engineered biological approaches to regenerate or replace the IVD. Injectable biodegradable hydrogels with swelling properties are in focus for NP replacement, whereas electrospun biphasic composites and silk, among other biodegradable polymers, are discussed for AF reinforcement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vinblastine sulphate (VBS) is an anticancer drug that acts by disrupting microtubule dynamics of highly mitotic tissue cells. The consequences of VBS on the olfactory mucosa (OM), a tissue with high mitotic numbers, are not clearly understood. We used qualitative and quantitative methods to determine the structural changes that may be produced on the rabbit OM by VBS. Following a single dose (0.31 mg/kg) of this drug, the structure of the mucosa was greatly altered on the first 3-5 days. The alteration was characterized by disarrangement of the normal layering of nuclei of the epithelia, degeneration of axonal bundles, occurrence of blood vessels within the bundles, localized death of cells of Bowman's glands and glandular degeneration. Surprisingly on or after day 7 and progressively to day 15 post-exposure, the OM was observed to regenerate and acquire normal morphology, and the vessels disappeared from the bundles. Relative to control values, bundle diameters, olfactory cell densities and cilia numbers decreased to as low as 53.1, 75.2 and 71.4%, respectively, on day 5. Volume density for the bundles, which was 28.6% in controls, decreased to a lowest value of 16.8% on day 5. In contrast, the volume density for the blood vessels was significantly lower in controls (19.9%) than in treated animals at day 2 (25.8%), day 3 (34.3%) and day 5 (31.5%). These findings suggest that the changes induced on the rabbit OM by VBS are transient and that regenerative recovery leads to the restoration of the normal structure of the mucosa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Angiogenesis, i.e. the development and growth of blood vessels, is a major topic of research as it plays an important role in normal development and in various pathologies. Recent evidence revealed the existence of different mechanisms of blood vessel growth, including sprouting and intussusceptive angiogenesis, vascular mimicry, and blood vessel cooption. The latter two have only been observed in tumor growth, but sprouting and intussusceptive angiogenesis also occur in healthy, physiologically growing tissues. Despite this variety of angiogenic mechanisms, most of the current research is focused on the mechanism of sprouting angiogenesis because this mechanism was first described and because most existing experimental models are related to sprouting angiogenesis. Consequently, the mechanism of intussusceptive angiogenesis is often overlooked in angiogenesis research. Here, the mechanism of intussusceptive angiogenesis is reviewed and the current techniques and models for investigating intussusceptive angiogenesis are summarized. In addition, other mechanisms of vascular growth are briefly reviewed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human epithelial cell adhesion molecule (EpCAM) is highly expressed in a variety of clinical tumour entities. Although an antibody against EpCAM has successfully been used as an adjuvant therapy in colon cancer, this therapy has never gained wide-spread use. We have therefore investigated the possibilities and limitations for EpCAM as possible molecular imaging target using a panel of preclinical cancer models. Twelve human cancer cell lines representing six tumour entities were tested for their EpCAM expression by qPCR, flow cytometry analysis and immunocytochemistry. In addition, EpCAM expression was analyzed in vivo in xenograft models for tumours derived from these cells. Except for melanoma, all cell lines expressed EpCAM mRNA and protein when grown in vitro. Although they exhibited different mRNA levels, all cell lines showed similar EpCAM protein levels upon detection with monoclonal antibodies. When grown in vivo, the EpCAM expression was unaffected compared to in vitro except for the pancreatic carcinoma cell line 5072 which lost its EpCAM expression in vivo. Intravenously applied radio-labelled anti EpCAM MOC31 antibody was enriched in HT29 primary tumour xenografts indicating that EpCAM binding sites are accessible in vivo. However, bound antibody could only be immunohistochemically detected in the vicinity of perfused blood vessels. Investigation of the fine structure of the HT29 tumour blood vessels showed that they were immature and prone for higher fluid flux into the interstitial space. Consistent with this hypothesis, a higher interstitial fluid pressure of about 12 mbar was measured in the HT29 primary tumour via "wick-in-needle" technique which could explain the limited diffusion of the antibody into the tumour observed by immunohistochemistry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Echinococcus multilocularis metacestodes, the surface-associated and highly glycosylated laminated layer, and molecules associated with this structure, is believed to be involved in modulating the host-parasite interface. We report on the molecular and functional characterisation of E. multilocularis phosphoglucose isomerase (EmPGI), which is a component of this laminated layer. The EmPGI amino acid sequence is virtually identical to that of its homologue in Echinococcus granulosus, and shares 64% identity and 86% similarity with human PGI. Mammalian PGI is a multi-functional protein which, besides its glycolytic function, can also act as a cytokine, growth factor and inducer of angiogenesis, and plays a role in tumour growth, development and metastasis formation. Recombinant EmPGI (recEmPGI) is also functionally active as a glycolytic enzyme and was found to be present, besides the laminated layer, in vesicle fluid and in germinal layer cell extracts. EmPGI is released from metacestodes and induces a humoral immune response in experimentally infected mice, and vaccination of mice with recEmPGI renders these mice more resistant towards secondary challenge infection, indicating that EmPGI plays an important role in parasite development and/or in modulating the host-parasite relationship. We show that recEmPGI stimulates the growth of isolated E. multilocularis germinal layer cells in vitro and selectively stimulates the proliferation of bovine adrenal cortex endothelial cells but not of human fibroblasts and rat hepatocytes. Thus, besides its role in glycolysis, EmPGI could also act as a factor that stimulates parasite growth and potentially induces the formation of novel blood vessels around the developing metacestode in vivo.