42 resultados para Blood Respiratory Properties
Resumo:
In a surfactant-depletion model of lung injury, tidal recruitment of atelectasis and changes in shunt fraction lead to large Pao2 oscillations. We investigated the effect of these oscillations on conventional arterial blood gas (ABG) results using different sampling techniques in ventilated rabbits. In each rabbit, 5 different ventilator settings were studied, 2 before saline lavage injury and 3 after lavage injury. Ventilator settings were altered according to 5 different goals for the amplitude and mean value of brachiocephalic Pao2 oscillations, as guided by a fast responding intraarterial probe. ABG collection was timed to obtain the sample at the peak or trough of the Pao2 oscillations, or over several respiratory cycles. Before lung injury, oscillations were small and sample timing did not influence Pao2. After saline lavage, when Po2 fluctuations measured by the indwelling arterial Po2 probe confirmed tidal recruitment, Pao2 by ABG was significantly higher at peak (295 +/- 130 mm Hg) compared with trough (74 +/- 15 mm Hg) or mean (125 +/- 75 mm Hg). In early, mild lung injury after saline lavage, Pao2 can vary markedly during the respiratory cycle. When atelectasis is recruited with each breath, interpretation of changes in shunt fraction, based on conventional ABG analysis, should account for potentially large respiratory variations in arterial Po2.
Resumo:
Resuscitation from hemorrhagic shock relies on fluid retransfusion. However, the optimal properties of the fluid have not been established. The aim of the present study was to test the influence of the concentration of hydroxyethyl starch (HES) solution on plasma viscosity and colloid osmotic pressure (COP), systemic and microcirculatory recovery, and oxygen delivery and consumption after resuscitation, which were assessed in the hamster chamber window preparation by intravital microscopy. Awake hamsters were subjected to 50% hemorrhage and were resuscitated with 25% of the estimated blood volume with 5%, 10%, or 20% HES solution. The increase in concentration led to an increase in COP (from 20 to 70 and 194 mmHg) and viscosity (from 1.7 to 3.8 and 14.4 cP). Cardiac index and microcirculatory and metabolic recovery were improved with HES 10% and 20% when compared with 5% HES. Oxygen delivery and consumption in the dorsal skinfold chamber was more than doubled with HES 10% and 20% when compared with HES 5%. This was attributed to the beneficial effect of restored or increased plasma COP and plasma viscosity as obtained with HES 10% and 20%, leading to improved microcirculatory blood flow values early in the resuscitation period. The increase in COP led to an increase in blood volume as shown by a reduction in hematocrit. Mean arterial pressure was significantly improved in animals receiving 10% and 20% solutions. In conclusion, the present results show that the increase in the concentration of HES, leading to hyperoncotic and hyperviscous solutions, is beneficial for resuscitation from hemorrhagic shock because normalization of COP and viscosity led to a rapid recovery of microcirculatory parameters.
Resumo:
IL-15 has recently been shown to induce the differentiation of functional dendritic cells (DCs) from human peripheral blood monocytes. Since DCs lay in close proximity to epithelial cells in the airway mucosa, we investigated whether airway epithelial cells release IL-15 in response to inflammatory stimuli and thereby induce differentiation and maturation of DCs. Alveolar (A549) and bronchial (BEAS-2B) epithelial cells produced IL-15 spontaneously and in a time- and dose-dependent manner after stimulation with IL-1beta, IFN-gamma, or TNF-alpha. Airway epithelial cell supernatants induced an increase of IL-15Ralpha gene expression in ex vivo monocytes, and stimulated DCs enhanced their IL-15Ralpha gene expression up to 300-fold. Airway epithelial cell-conditioned media induced the differentiation of ex vivo monocytes into partially mature DCs (HLA-DR+, DC-SIGN+, CD14+, CD80-, CD83+, CD86+, CCR3+, CCR6(+), CCR7-). Based on their phenotypic (CD123+, BDCA2+, BDCA4+, BDCA1(-), CD1a-) and functional properties (limited maturation upon stimulation with LPS and limited capacity to induce T cell proliferation), these DCs resembled plasmacytoid DCs. The effects of airway epithelial cell supernatants were largely blocked by a neutralizing monoclonal antibody to IL-15. Thus, our results demonstrate that airway epithelial cell-conditioned media have the capacity to differentiate monocytes into functional DCs, a process substantially mediated by epithelial-derived IL-15.
Resumo:
ABSTRACT: Nanotechnology in its widest sense seeks to exploit the special biophysical and chemical properties of materials at the nanoscale. While the potential technological, diagnostic or therapeutic applications are promising there is a growing body of evidence that the special technological features of nanoparticulate material are associated with biological effects formerly not attributed to the same materials at a larger particle scale. Therefore, studies that address the potential hazards of nanoparticles on biological systems including human health are required. Due to its large surface area the lung is one of the major sites of interaction with inhaled nanoparticles. One of the great challenges of studying particle-lung interactions is the microscopic visualization of nanoparticles within tissues or single cells both in vivo and in vitro. Once a certain type of nanoparticle can be identified unambiguously using microscopic methods it is desirable to quantify the particle distribution within a cell, an organ or the whole organism. Transmission electron microscopy provides an ideal tool to perform qualitative and quantitative analyses of particle-related structural changes of the respiratory tract, to reveal the localization of nanoparticles within tissues and cells and to investigate the 3D nature of nanoparticle-lung interactions.This article provides information on the applicability, advantages and disadvantages of electron microscopic preparation techniques and several advanced transmission electron microscopic methods including conventional, immuno and energy-filtered electron microscopy as well as electron tomography for the visualization of both model nanoparticles (e.g. polystyrene) and technologically relevant nanoparticles (e.g. titanium dioxide). Furthermore, we highlight possibilities to combine light and electron microscopic techniques in a correlative approach. Finally, we demonstrate a formal quantitative, i.e. stereological approach to analyze the distributions of nanoparticles in tissues and cells.This comprehensive article aims to provide a basis for scientists in nanoparticle research to integrate electron microscopic analyses into their study design and to select the appropriate microscopic strategy.
Resumo:
A morphological and morphometric study of the lung of the newborn quokka wallaby (Setonix brachyurus) was undertaken to assess its morphofunctional status at birth. Additionally, skin structure and morphometry were investigated to assess the possibility of cutaneous gas exchange. The lung was at canalicular stage and comprised a few conducting airways and a parenchyma of thick-walled tubules lined by stretches of cuboidal pneumocytes alternating with squamous epithelium, with occasional portions of thin blood-gas barrier. The tubules were separated by abundant intertubular mesenchyme, aggregations of developing capillaries and mesenchymal cells. Conversion of the cuboidal pneumocytes to type I cells occurred through cell broadening and lamellar body extrusion. Superfluous cuboidal cells were lost through apoptosis and subsequent clearance by alveolar macrophages. The establishment of the thin blood-gas barrier was established through apposition of the incipient capillaries to the formative thin squamous epithelium. The absolute volume of the lung was 0.02 +/- 0.001 cm(3) with an air space surface area of 4.85 +/- 0.43 cm(2). Differentiated type I pneumocytes covered 78% of the tubular surface, the rest 22% going to long stretches of type II cells, their precursors or low cuboidal transitory cells with sparse lamellar bodies. The body weight-related diffusion capacity was 2.52 +/- 0.56 mL O(2) min(-1) kg(-1). The epidermis was poorly developed, and measured 29.97 +/- 4.88 microm in thickness, 13% of which was taken by a thin layer of stratum corneum, measuring 4.87 +/- 0.98 microm thick. Superficial capillaries were closely associated with the epidermis, showing the possibility that the skin also participated in some gaseous exchange. Qualitatively, the neonate quokka lung had the basic constituents for gas exchange but was quantitatively inadequate, implying the significance of percutaneous gas exchange.
Resumo:
BACKGROUND: Pulmonary inflammation after cardiac surgery with cardiopulmonary bypass (CPB) has been linked to respiratory dysfunction and ultrastructural injury. Whether pretreatment with methylprednisolone (MP) can preserve pulmonary surfactant and blood-air barrier, thereby improving pulmonary function, was tested in a porcine CPB-model. MATERIALS AND METHODS: After randomizing pigs to placebo (PLA; n = 5) or MP (30 mg/kg, MP; n = 5), animals were subjected to 3 h of CPB with 1 h of cardioplegic cardiac arrest. Hemodynamic data, plasma tumor necrosis factor-alpha (TNF-alpha, ELISA), and pulmonary function parameters were assessed before, 15 min after CPB, and 8 h after CPB. Lung biopsies were analyzed for TNF-alpha (Western blot) or blood-air barrier and surfactant morphology (electron microscopy, stereology). RESULTS: Systemic TNF-alpha increased and cardiac index decreased at 8 h after CPB in PLA (P < 0.05 versus pre-CPB), but not in MP (P < 0.05 versus PLA). In both groups, at 8 h after CPB, PaO(2) and PaO(2)/FiO(2) were decreased and arterio-alveolar oxygen difference and pulmonary vascular resistance were increased (P < 0.05 versus baseline). Postoperative pulmonary TNF-alpha remained unchanged in both groups, but tended to be higher in PLA (P = 0.06 versus MP). The volume fraction of inactivated intra-alveolar surfactant was increased in PLA (58 +/- 17% versus 83 +/- 6%) and MP (55 +/- 18% versus 80 +/- 17%) after CPB (P < 0.05 versus baseline for both groups). Profound blood-air barrier injury was present in both groups at 8 h as indicated by an increased blood-air barrier integrity score (PLA: 1.28 +/- 0.03 versus 1.70 +/- 0.1; MP: 1.27 +/- 0.08 versus 1.81 +/- 0.1; P < 0.05). CONCLUSION: Despite reduction of the systemic inflammatory response and pulmonary TNF-alpha generation, methylprednisolone fails to decrease pulmonary TNF-alpha and to preserve pulmonary surfactant morphology, blood-air barrier integrity, and pulmonary function after CPB.
Resumo:
ABSTRACT: INTRODUCTION: Low blood pressure, inadequate tissue oxygen delivery and mitochondrial dysfunction have all been implicated in the development of sepsis-induced organ failure. This study evaluated the effect on liver mitochondrial function of using norepinephrine to increase blood pressure in experimental sepsis. METHODS: Thirteen anaesthetized pigs received endotoxin (Escherichia coli lipopolysaccharide B0111:B4; 0.4 mug/kg per hour) and were subsequently randomly assigned to norepinephrine treatment or placebo for 10 hours. Norepinephrine dose was adjusted at 2-hour intervals to achieve 15 mmHg increases in mean arterial blood pressure up to 95 mmHg. Systemic (thermodilution) and hepatosplanchnic (ultrasound Doppler) blood flow were measured at each step. At the end of the experiment, hepatic mitochondrial oxygen consumption (high-resolution respirometry) and citrate synthase activity (spectrophotometry) were assessed. RESULTS: Mean arterial pressure (mmHg) increased only in norepinephrine-treated animals (from 73 [median; range 69 to 81] to 63 [60 to 68] in controls [P = 0.09] and from 83 [69 to 93] to 96 [86 to 108] in norepinephrine-treated animals [P = 0.019]). Cardiac index and systemic oxygen delivery (DO2) increased in both groups, but significantly more in the norepinephrine group (P < 0.03 for both). Cardiac index (ml/min per.kg) increased from 99 (range: 72 to 112) to 117 (110 to 232) in controls (P = 0.002), and from 107 (84 to 132) to 161 (147 to 340) in norepinephrine-treated animals (P = 0.001). DO2 (ml/min per.kg) increased from 13 (range: 11 to 15) to 16 (15 to 24) in controls (P = 0.028), and from 16 (12 to 19) to 29 (25 to 52) in norepinephrine-treated animals (P = 0.018). Systemic oxygen consumption (systemic VO2) increased in both groups (P < 0.05), whereas hepatosplanchnic flows, DO2 and VO2 remained stable. The hepatic lactate extraction ratio decreased in both groups (P = 0.05). Liver mitochondria complex I-dependent and II-dependent respiratory control ratios were increased in the norepinephrine group (complex I: 3.5 [range: 2.1 to 5.7] in controls versus 5.8 [4.8 to 6.4] in norepinephrine-treated animals [P = 0.015]; complex II: 3.1 [2.3 to 3.8] in controls versus 3.7 [3.3 to 4.6] in norepinephrine-treated animals [P = 0.09]). No differences were observed in citrate synthase activity. CONCLUSION: Norepinephrine treatment during endotoxaemia does not increase hepatosplanchnic flow, oxygen delivery or consumption, and does not improve the hepatic lactate extraction ratio. However, norepinephrine increases the liver mitochondria complex I-dependent and II-dependent respiratory control ratios. This effect was probably mediated by a direct effect of norepinephrine on liver cells.
Resumo:
To clarify the pharmacological profile of the two new calcium channel blockers tiapamil and nisoldipine in humans, their acute effects as compared with those of the reference agent nifedipine were assessed in 10 normal subjects and 10 patients with essential hypertension. Blood pressure (BP), heart rate (HR), plasma and urinary catecholamine, sodium and potassium, plasma renin and aldosterone levels, and urinary prostaglandin E2 and F2 excretion rates were determined before and up to 4 or 5 h (urine values) after intravenous injection of placebo (20 ml 0.9% NaCl), tiapamil 1 mg/kg body weight, nisoldipine 6 micrograms/kg, or nifedipine 15 micrograms/kg. The four studies were performed at weekly intervals according to Latin square design. All three calcium channel blockers significantly (p less than 0.05 or lower) lowered BP and distinctly increased sodium excretion in hypertensive patients, but had only little influence on these parameters in normal subjects. HR was increased in both groups. Changes in BP and HR were maximal at 5 min and largely dissipated 3 h after drug injection. Effects on BP and HR, as well as concomitant mild increases in plasma norepinephrine and renin levels that occurred in both groups, tended to be more pronounced (about double) following nisoldipine than following tiapamil or nifedipine at the dosages given. Plasma aldosterone, epinephrine levels, and prostaglandin excretion rates were not consistently modified. These findings demonstrate that tiapamil and nisoldipine possess distinct antihypertensive properties in humans. Different chronotropic and renin-activating effects of different calcium channel blockers may be determined, at least in part, by a different influence on sympathetic activity.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
INTRODUCTION: The incidence of bloodstream infection (BSI) in extracorporeal life support (ECLS) is reported between 0.9 and 19.5%. In January 2006, the Extracorporeal Life Support Organization (ELSO) reported an overall incidence of 8.78% distributed as follows: respiratory: 6.5% (neonatal), 20.8% (pediatric); cardiac: 8.2% (neonatal) and 12.6% (pediatric). METHOD: At BC Children's Hospital (BCCH) daily surveillance blood cultures (BC) are performed and antibiotic prophylaxis is not routinely recommended. Positive BC (BC+) were reviewed, including resistance profiles, collection time of BC+, time to positivity and mortality. White blood cell count, absolute neutrophile count, immature/total ratio, platelet count, fibrinogen and lactate were analyzed 48, 24 and 0 h prior to BSI. A univariate linear regression analysis was performed. RESULTS: From 1999 to 2005, 89 patients underwent ECLS. After exclusion, 84 patients were reviewed. The attack rate was 22.6% (19 BSI) and 13.1% after exclusion of coagulase-negative staphylococci (n = 8). BSI patients were significantly longer on ECLS (157 h) compared to the no-BSI group (127 h, 95% CI: 106-148). Six BSI patients died on ECLS (35%; 4 congenital diaphragmatic hernias, 1 hypoplastic left heart syndrome and 1 after a tetralogy repair). BCCH survival on ECLS was 71 and 58% at discharge, which is comparable to previous reports. No patient died primarily because of BSI. No BSI predictor was identified, although lactate may show a decreasing trend before BSI (P = 0.102). CONCLUSION: Compared with ELSO, the studied BSI incidence was higher with a comparable mortality. We speculate that our BSI rate is explained by underreporting of "contaminants" in the literature, the use of broad-spectrum antibiotic prophylaxis and a higher yield with daily monitoring BC. We support daily surveillance blood cultures as an alternative to antibiotic prophylaxis in the management of patients on ECLS.
Resumo:
Anthropogenic nano-sized particles (NSP), ie, particles with a diameter of less than 100 nm, are generated with or without purpose as chemically and physically well-defined materials or as a consequence of combustion processes respectively. Inhalation of NSP occurs on a regular basis due to air pollution and is associated with an increase in respiratory and cardiovascular morbidity and mortality. Manufactured NSP may intentionally be inhaled as pharmaceuticals or unintentionally during production at the workplace. Hence the interactions of NSP with the respiratory tract are currently under intensive investigation. Due to special physicochemical features of NSP, its biological behaviour may differ from that of larger sized particles. Here we review two important themes of current research into the effects of NSP on the lungs: 1) The potential of NSP to cross the blood-air barrier of the lungs, thus gaining access to the circulation and extrapulmonary organs. It is currently accepted that a small fraction of inhaled NSP may translocate to the circulation. The significance of this translocation requires further research. 2) The entering mechanisms of NSP into different cell types. There is evidence that NSP are taken up by cells via well-known pathways of endocytosis but also via different mechanisms not well understood so far. Knowledge of the quantitative relationship between the different entering mechanisms and cellular responses is not yet available but is urgently needed in order to understand the effects of intentionally or unintentionally inhaled NSP on the respiratory tract.
Resumo:
Erythropoietin (EPO) and iron deficiency as causes of anemia in patients with limited renal function or end-stage renal disease are well addressed. The concomitant impairment of red blood cell (RBC) survival has been largely neglected. Properties of the uremic environment like inflammation, increased oxidative stress and uremic toxins seem to be responsible for the premature changes in RBC membrane and cytoskeleton. The exposure of antigenic sites and breakdown of the phosphatidylserine asymmetry promote RBC phagocytosis. While the individual response to treatment with EPO-stimulating agents (ESA) depends on both the RBC's lifespan and the production rate, uniform dosing algorithms do not meet that demand. The clinical use of mathematical models predicting ESA-induced changes in hematocrit might be greatly improved once independent estimates of RBC production rate and/or lifespan become available, thus making the concomitant estimation of both parameters unnecessary. Since heme breakdown by the hemoxygenase pathway results in carbon monoxide (CO) which is exhaled, a simple CO breath test has been used to calculate hemoglobin turnover and therefore RBC survival and lifespan. Future research will have to be done to validate and implement this method in patients with kidney failure. This will result in new insights into RBC kinetics in renal patients. Eventually, these findings are expected to improve our understanding of the hemoglobin variability in response to ESA.
Resumo:
Before entering the central nervous system (CNS) immune cells have to penetrate any one of its barriers, namely either the endothelial blood-brain barrier, the epithelial blood-cerebrospinal fluid barrier or the tanycytic barrier around the circumventricular organs, all of which maintain homeostasis within the CNS. The presence of these barriers in combination with the lack of lymphatic vessels and the absence of classical MHC-positive antigen presenting cells characterizes the CNS as an immunologically privileged site. In multiple sclerosis a large number of inflammatory cells gains access to the CNS parenchyma. Studies performed in experimental autoimmune encephalomyelitis (EAE), a rodent model for multiple sclerosis, have enabled us to understand some of the molecular mechanisms involved in immune cell entry into the CNS. In particular, the realization that /alpha4-integrins play a predominant role in leukocyte trafficking to the CNS has led to the development of a novel drug for the treatment of relapsing-remitting multiple sclerosis, which targets /alpha4-integrin mediated immune cell migration to the CNS. At the same time, the involvement of other adhesion and signalling molecules in this process remains to be investigated and novel molecules contributing to immune cell entry into the CNS are still being identified. The entire process of immune cell trafficking into the CNS is strictly controlled by the brain barriers not only under physiological conditions but also during neuroinflammation, when some barrier properties are lost. Thus, immune cell entry into the CNS critically depends on the unique characteristics of the brain barriers maintaining CNS homeostasis.
Resumo:
BACKGROUND: Blood-brain barrier (BBB) breakdown is an early event in the pathogenesis of multiple sclerosis (MS). In a previous study we have found a direct stabilization of barrier characteristics after treatment of bovine brain capillary endothelial cells (BCECs) with human recombinant interferon-beta-1a (IFN-beta-1a) in an in vitro BBB model. In the present study we examined the effect of human recombinant IFN-beta-1a on the barrier properties of BCECs derived from four different species including humans to predict treatment efficacy of IFN-beta-1a in MS patients. METHODS: We used primary bovine and porcine BCECs, as well as human and murine BCEC cell lines. We investigated the influence of human recombinant IFN-beta-1a on the paracellular permeability for 3H-inulin and 14C-sucrose across monolayers of bovine, human, and murine BCECs. In addition, the transendothelial electrical resistance (TEER) was determined in in vitro systems applying porcine and murine BCECS. RESULTS: We found a stabilizing effect on the barrier characteristics of BCECs after pretreatment with IFN-beta-1a in all applied in vitro models: addition of IFN-beta-1a resulted in a significant decrease of the paracellular permeability across monolayers of human, bovine, and murine BCECs. Furthermore, the TEER was significantly increased after pretreatment of porcine and murine BCECs with IFN-beta-1a. CONCLUSION: Our data suggest that BBB stabilization by IFN-beta-1a may contribute to its beneficial effects in the treatment of MS. A human in vitro BBB model might be useful as bioassay for testing the treatment efficacy of drugs in MS.
Resumo:
Very recently, the concept of artificial intracorporeal oxygenation of blood for patients suffering from respiratory failure has been introduced into clinical practice through development of a totally implantable intravascular oxygenator (IVOX). We report on the use of such a device in a patient who developed severe respiratory insufficiency secondary to prolonged hypovolaemic shock and pneumonia following successful repair of a ruptured abdominal aortic aneurysm in September, 1990. Postoperatively, severe hypoxaemia occurred (AaDO2 548-602 torr) despite extensive mechanical ventilatory support. There was no obvious chance to overcome this situation by conventional therapeutic measures and the decision was made to institute IVOX therapy. Hypoxaemia was resolved immediately and both FiO2 and tidal volume could be reduced within hours. The patient's respiratory condition continued to improve over the next days leading to termination of IVOX therapy after 71 hours. However, the necessity of long-term ventilatory support secondary to recurrent pneumonia and sepsis, multiple abdominal reoperations for ischemic colitis and retroperitoneal abscess prolonged his recovery. He was discharged from the hospital after four months and is alive and well now 14 months after his operation. He is the first long-term survivor after IVOX therapy in Europe. IVOX may be successfully used in selected patients while the indications and it's potential role in the therapy of severe respiratory failure still need to be defined.
Resumo:
We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.