28 resultados para Biomedical informatics
Resumo:
Background: Statistical shape models are widely used in biomedical research. They are routinely implemented for automatic image segmentation or object identification in medical images. In these fields, however, the acquisition of the large training datasets, required to develop these models, is usually a time-consuming process. Even after this effort, the collections of datasets are often lost or mishandled resulting in replication of work. Objective: To solve these problems, the Virtual Skeleton Database (VSD) is proposed as a centralized storage system where the data necessary to build statistical shape models can be stored and shared. Methods: The VSD provides an online repository system tailored to the needs of the medical research community. The processing of the most common image file types, a statistical shape model framework, and an ontology-based search provide the generic tools to store, exchange, and retrieve digital medical datasets. The hosted data are accessible to the community, and collaborative research catalyzes their productivity. Results: To illustrate the need for an online repository for medical research, three exemplary projects of the VSD are presented: (1) an international collaboration to achieve improvement in cochlear surgery and implant optimization, (2) a population-based analysis of femoral fracture risk between genders, and (3) an online application developed for the evaluation and comparison of the segmentation of brain tumors. Conclusions: The VSD is a novel system for scientific collaboration for the medical image community with a data-centric concept and semantically driven search option for anatomical structures. The repository has been proven to be a useful tool for collaborative model building, as a resource for biomechanical population studies, or to enhance segmentation algorithms.
Resumo:
Polymer implants are interesting alternatives to the contemporary load-bearing implants made from metals. Polyetheretherketone (PEEK), a well-established biomaterial for example, is not only iso-elastic to bone but also permits investigating the surrounding soft tissues using magnetic resonance imaging or computed tomography, which is particularly important for cancer patients. The commercially available PEEK bone implants, however, require costly coatings, which restricts their usage. As an alternative to coatings, plasma activation can be applied. The present paper shows the plasma-induced preparation of nanostructures on polymer films and on injection-molded micro-cantilever arrays and the associated chemical modifications of the surface. In vitro cell experiments indicate the suitability of the activation process. In addition, we show that microstructures such as micro-grooves 1 μm deep and 20 μm wide cause cell alignment. The combination of micro-injection molding, simultaneous microstructuring using inserts/bioreplica and plasma treatments permits the preparation of polymer implants with nature-analogue, anisotropic micro- and nanostructures.
Resumo:
Computer vision-based food recognition could be used to estimate a meal's carbohydrate content for diabetic patients. This study proposes a methodology for automatic food recognition, based on the Bag of Features (BoF) model. An extensive technical investigation was conducted for the identification and optimization of the best performing components involved in the BoF architecture, as well as the estimation of the corresponding parameters. For the design and evaluation of the prototype system, a visual dataset with nearly 5,000 food images was created and organized into 11 classes. The optimized system computes dense local features, using the scale-invariant feature transform on the HSV color space, builds a visual dictionary of 10,000 visual words by using the hierarchical k-means clustering and finally classifies the food images with a linear support vector machine classifier. The system achieved classification accuracy of the order of 78%, thus proving the feasibility of the proposed approach in a very challenging image dataset.
Resumo:
Companion animals closely share their domestic environment with people and have the potential to, act as sources of zoonotic diseases. They also have the potential to be sentinels of infectious and noninfectious, diseases. With the exception of rabies, there has been minimal ongoing surveillance of, companion animals in Canada. We developed customized data extraction software, the University of, Calgary Data Extraction Program (UCDEP), to automatically extract and warehouse the electronic, medical records (EMR) from participating private veterinary practices to make them available for, disease surveillance and knowledge creation for evidence-based practice. It was not possible to build, generic data extraction software; the UCDEP required customization to meet the specific software, capabilities of the veterinary practices. The UCDEP, tailored to the participating veterinary practices', management software, was capable of extracting data from the EMR with greater than 99%, completeness and accuracy. The experiences of the people developing and using the UCDEP and the, quality of the extracted data were evaluated. The electronic medical record data stored in the data, warehouse may be a valuable resource for surveillance and evidence-based medical research.
Resumo:
Antimicrobial drugs may be used to treat diarrheal illness in companion animals. It is important to monitor antimicrobial use to better understand trends and patterns in antimicrobial resistance. There is no monitoring of antimicrobial use in companion animals in Canada. To explore how the use of electronic medical records could contribute to the ongoing, systematic collection of antimicrobial use data in companion animals, anonymized electronic medical records were extracted from 12 participating companion animal practices and warehoused at the University of Calgary. We used the pre-diagnostic, clinical features of diarrhea as the case definition in this study. Using text-mining technologies, cases of diarrhea were described by each of the following variables: diagnostic laboratory tests performed, the etiological diagnosis and antimicrobial therapies. The ability of the text miner to accurately describe the cases for each of the variables was evaluated. It could not reliably classify cases in terms of diagnostic tests or etiological diagnosis; a manual review of a random sample of 500 diarrhea cases determined that 88/500 (17.6%) of the target cases underwent diagnostic testing of which 36/88 (40.9%) had an etiological diagnosis. Text mining, compared to a human reviewer, could accurately identify cases that had been treated with antimicrobials with high sensitivity (92%, 95% confidence interval, 88.1%-95.4%) and specificity (85%, 95% confidence interval, 80.2%-89.1%). Overall, 7400/15,928 (46.5%) of pets presenting with diarrhea were treated with antimicrobials. Some temporal trends and patterns of the antimicrobial use are described. The results from this study suggest that informatics and the electronic medical records could be useful for monitoring trends in antimicrobial use.
Resumo:
Superparamagnetic iron oxide nanoparticles for biomedical applications are usually coated with organic molecules to form a steric barrier against agglomeration. The stability of these coatings is well established in the synthesis medium but is more difficult to assess in physiological environment. To obtain a first theoretical estimate of their stability in such an environment, we perform density functional theory calculations of the adsorption of water, polyvinyl alcohol (PVA) and polyethylene glycol (PEG) coating molecules, as well as the monomer and dimer of glycine as a prototype short peptide, on the (110) surface of magnetite (Fe3O4) in vacuo. Our results show that PVA binds significantly stronger to the surface than both PEG and glycine, while the difference between the latter two is quite small. Depending on the coverage, the wateradsorption strength is intermediate between PVA and glycine. Due to its strongly interacting OH side groups, PVA is likely to remain bound to the surface in the presence of short peptides. This stability will have to be further assessed by molecular dynamics in the solvated state for which the present work forms the basis.