47 resultados para Biology, Molecular|Health Sciences, Pharmacology|Health Sciences, Oncology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the detection of expressed sequence tags that are similar to known galactosyltransferase sequences, we have isolated three novel UDP-galactose:beta-N-acetylglucosamine beta1, 3-galactosyltransferase (beta3GalT) genes from a mouse genomic library. The three genes, named beta3GalT-I, -II, and -III, encode type II transmembrane proteins of 326, 422, and 331 amino acids, respectively. The three proteins constitute a distinct subfamily as they do not share any sequence identity with other eucaryotic galactosyltransferases. Also, the entire protein-coding region of the three beta3GalT genes was contained in a single exon, which contrasts with the genomic organization of the beta1,4- and alpha1, 3-galactosyltransferase genes. The three beta3GalT genes were mainly expressed in brain tissue. The expression of the full-length murine genes as recombinant baculoviruses in insect cells revealed that the beta3GalT enzymes share the same acceptor specificity for beta-linked GlcNAc, although they differ in their Km for this acceptor and the donor UDP-Gal. The identification of beta3GalT genes emphasizes the structural diversity present in the galactosyltransferase gene family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Species of the family Pasteurellaceae play an important role as primary or opportunistic, predominantly respiratory, pathogens in domestic and wild animals. Some of them cause severe disease with high economic losses in commercial animal husbandry. Hence, rapid and accurate differentiation of Pasteurellaceae is important and signifies a particular challenge to diagnostic laboratories. Identification and differentiation of Pasteurellaceae is mostly done using phenotypic tests or genetic identification based on sequence similarity of housekeeping genes, such as the rrs gene encoding the 16S ribosomal RNA (16S rRNA). Both approaches are time consuming, laborious, and costly, therefore often delaying the final diagnosis of disease or epidemics. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry represents an alternative rapid and reliable method for the differentiation of most members of the family Pasteurellaceae. It is able to differentiate within a few minutes the currently known 18 genera and most of the over 60 species and subspecies of Pasteurellaceae including many members encountered in veterinary diagnostic laboratories. A few closely related species and subspecies that cannot be discriminated by MALDI-TOF are easily identified further by complementary simple tests, such as hemolysis done simultaneously or routinely during pathogen isolation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polypeptide composition of the U7 small nuclear ribonucleoprotein (snRNP) involved in histone messenger RNA (mRNA) 3' end formation has recently been elucidated. In contrast to spliceosomal snRNPs, which contain a ring-shaped assembly of seven so-called Sm proteins, in the U7 snRNP the Sm proteins D1 and D2 are replaced by U7-specific Sm-like proteins, Lsm10 and Lsm11. This polypeptide composition and the unusual structure of Lsm11, which plays a role in histone RNA processing, represent new themes in the biology of Sm/Lsm proteins. Moreover this structure has important consequences for snRNP assembly that is mediated by two complexes containing the PRMT5 methyltransferase and the SMN (survival of motor neurons) protein, respectively. Finally, the ability to alter this polypeptide composition by a small mutation in U7 snRNA forms the basis for using modified U7 snRNA derivatives to alter specific pre-mRNA splicing events, thereby opening up a new way for antisense gene therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most cases of Duchenne muscular dystrophy are caused by dystrophin gene mutations that disrupt the mRNA reading frame. Artificial exclusion (skipping) of a single exon would often restore the reading frame, giving rise to a shorter, but still functional dystrophin protein. Here, we analyzed the ability of antisense U7 small nuclear (sn)RNA derivatives to alter dystrophin pre-mRNA splicing. As a proof of principle, we first targeted the splice sites flanking exon 23 of dystrophin pre-mRNA in the wild-type muscle cell line C2C12 and showed precise exon 23 skipping. The same strategy was then successfully adapted to dystrophic immortalized mdx muscle cells where exon-23-skipped dystrophin mRNA rescued dystrophin protein synthesis. Moreover, we observed a stimulation of antisense U7 snRNA expression by the murine muscle creatine kinase enhancer. These results demonstrate that alteration of dystrophin pre-mRNA splicing could correct dystrophin gene mutations by expression of specific U7 snRNA constructs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plasmin-antiplasmin system plays a key role in blood coagulation and fibrinolysis. Plasmin and (2)-antiplasmin are primarily responsible for a controlled and regulated dissolution of the fibrin polymers into soluble fragments. However, besides plasmin(ogen) and (2)-antiplasmin the system contains a series of specific activators and inhibitors. The main physiological activators of plasminogen are tissue-type plasminogen activator, which is mainly involved in the dissolution of the fibrin polymers by plasmin, and urokinase-type plasminogen activator, which is primarily responsible for the generation of plasmin activity in the intercellular space. Both activators are multidomain serine proteases. Besides the main physiological inhibitor (2)-antiplasmin, the plasmin-antiplasmin system is also regulated by the general protease inhibitor (2)-macroglobulin, a member of the protease inhibitor I39 family. The activity of the plasminogen activators is primarily regulated by the plasminogen activator inhibitors 1 and 2, members of the serine protease inhibitor superfamily.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemicals can elicit T-cell-mediated diseases such as allergic contact dermatitis and adverse drug reactions. Therefore, testing of chemicals, drugs and protein allergens for hazard identification and risk assessment is essential in regulatory toxicology. The seventh amendment of the EU Cosmetics Directive now prohibits the testing of cosmetic ingredients in mice, guinea pigs and other animal species to assess their sensitizing potential. In addition, the EU Chemicals Directive REACh requires the retesting of more than 30,000 chemicals for different toxicological endpoints, including sensitization, requiring vast numbers of animals. Therefore, alternative methods are urgently needed to eventually replace animal testing. Here, we summarize the outcome of an expert meeting in Rome on 7 November 2009 on the development of T-cell-based in vitro assays as tools in immunotoxicology to identify hazardous chemicals and drugs. In addition, we provide an overview of the development of the field over the last two decades.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian kidney develops from the ureteric bud and the metanephric mesenchyme. In mice, the ureteric bud invades the metanephric mesenchyme at day E10.5 and begins to branch. The tips of the ureteric bud induce the metanephric mesenchyme to condense and form the cap mesenchyme. Some cells of this cap mesenchyme undergo a mesenchymal-to-epithelial transition and differentiate into renal vesicles, which further develop into nephrons. The developing kidney expresses Fibroblast growth factor (Fgf)1, 7, 8, 9, 10, 12 and 20 and Fgf receptors Fgfr1 and Fgfr2. Fgf7 and Fgf10, mainly secreted by the metanephric mesenchyme, bind to Fgfr2b of the ureteric bud and induce branching. Fgfr1 and Fgfr2c are required for formation of the metanephric mesenchyme, however the two receptors can substitute for one another. Fgf8, secreted by renal vesicles, binds to Fgfr1 and supports survival of cells in the nascent nephrons. Fgf9 and Fgf20, expressed in the metanephric mesenchyme, are necessary to maintain survival of progenitor cells in the cortical region of the kidney. FgfrL1 is a novel member of the Fgfr family that lacks the intracellular tyrosine kinase domain. It is expressed in the ureteric bud and all nephrogenic structures. Targeted deletion of FgfrL1 leads to severe kidney dysgenesis due to the lack of renal vesicles. FgfrL1 is known to interact mainly with Fgf8. It is therefore conceivable that FgfrL1 restricts signaling of Fgf8 to the precise location of the nascent nephrons. It might also promote tight adhesion of cells in the condensed metanephric mesenchyme as required for the mesenchymal-to-epithelial transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiovascular diseases involve abnormal cell-cell interactions leading to the development of atherosclerotic plaque, which when ruptured causes massive platelet activation and thrombus formation. Parts of a loose thrombus may detach to form an embolus, blocking circulation at a more distant point. The integrins are a family of adhesive cell receptors interacting with adhesive proteins or with counterreceptors on other cells. There is now solid evidence that the major integrin on platelets, the fibrinogen receptor alpha IIb beta 3, has an important role in several aspects of cardiovascular diseases and that its regulated inhibition leads to a reduction in incidence and mortality due to these disorders. The development of alpha IIb beta 3 inhibitors is an important strategy of many pharmaceutical companies which foresee a large market for the treatment of acute conditions in surgery, the symptoms of chronic conditions and, it is hoped, maybe even the successful prophylaxis of these conditions. Although all the associated problems have not been solved, the undoubted improvements in patient care resulting from the first of these treatments in the clinic have stimulated further research on the role of integrins on other vascular cells in these processes and in the search for new inhibitors. Both the development of specific inhibitors and of mice with specific integrin subunit genes ablated have contributed to a better understanding of the function of integrins in development of the cardiovascular system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Annexins are a family of structurally related, Ca2+-sensitive proteins that bind to negatively charged phospholipids and establish specific interactions with other lipids and lipid microdomains. They are present in all eukaryotic cells and share a common folding motif, the "annexin core", which incorporates Ca2+- and membrane-binding sites. Annexins participate in a variety of intracellular processes, ranging from the regulation of membrane dynamics to cell migration, proliferation, and apoptosis. Here we focus on the role of annexins in cellular signaling during stress. A chronic stress response triggers the activation of different intracellular pathways, resulting in profound changes in Ca2+ and pH homeostasis and the production of lipid second messengers. We review the latest data on how these changes are sensed by the annexins, which have the ability to simultaneously interact with specific lipid and protein moieties at the plasma membrane, contributing to stress adaptation via regulation of various signaling pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apoptosis is essential to eliminate secretory epithelial cells during the involution of the mammary gland. The environmental regulation of this process is however, poorly understood. This study tested the effect of HAMLET (human alpha-lactalbumin made lethal to tumor cells) on mammary cells. Plastic pellets containing HAMLET were implanted into the fourth inguinal mammary gland of lactating mice for 3 days. Exposure of mammary tissue to HAMLET resulted in morphological changes typical for apoptosis and in a stimulation of caspase-3 activity in alveolar epithelial cells near the HAMLET pellets but not more distant to the pellet or in contralateral glands. The effect was specific for HAMLET and no effects were observed when mammary glands were exposed to native a-lactalbumin or fatty acid alone. HAMLET also induced cell death in vitro in a mouse mammary epithelial cell line. The results suggest that HAMLET can mediate apoptotic cell death in mammary gland tissue.