75 resultados para Biochemical composition of mullet,


Relevância:

100.00% 100.00%

Publicador:

Resumo:

All microsomal P450s require POR (cytochrome P450 reductase) for catalytic activity. Most of the clinically used drugs are metabolized by a small number of P450s and polymorphisms in the cytochrome P450s are known to cause changes in drug metabolism. We have recently found a number of POR missense mutations in the patients with disordered steroidogenesis. Our initial report described five missense mutations (A284P, R454H, V489E, C566Y and V605F) identified in four patients. We built bacterial expression vectors for each POR variant, purified the membranes expressing normal or variant POR and characterized their activities with cytochrome c and P450c17 assays. We have recently completed an extensive study of the range of POR mutations and characterized the mutants/polymorphisms A112V, T139A, M260V, Y456H, A500V, G536R, L562P, R613X, V628I and F643del from sequencing of patient DNA. We also studied POR variants Y179D, P225L, R313W, G410S and G501R that were available in databases or the published literature. We analysed the mutations with a three-dimensional model of human POR that was based on an essentially similar rat POR with known crystal structure. The missense mutations found in patients with disordered steroidogenesis mapped to functionally important domains of POR and the apparent polymorphisms mapped to less crucial regions. Since a variation in POR can alter the activity of all microsomal P450s, it can also affect the drug metabolism even with a normal P450. Understanding the genetic and biochemical basis of POR-mediated drug metabolism will provide valuable information about possible differences in P450-mediated reactions among the individuals carrying a variant or polymorphic form of POR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: A severely virilized 46, XX newborn girl was referred to our center for evaluation and treatment of congenital adrenal hyperplasia (CAH) because of highly elevated 17alpha-hydroxyprogesterone levels at newborn screening; biochemical tests confirmed the diagnosis of salt-wasting CAH. Genetic analysis revealed that the girl was compound heterozygote for a previously reported Q318X mutation in exon 8 and a novel insertion of an adenine between nucleotides 962 and 963 in exon 4 of the CYP21A2 gene. This 962_963insA mutation created a frameshift leading to a stop codon at amino acid 161 of the P450c21 protein. AIM AND METHODS: To better understand structure-function relationships of mutant P450c21 proteins, we performed multiple sequence alignments of P450c21 with three mammalian P450s (P450 2C8, 2C9 and 2B4) with known structures as well as with human P450c17. Comparative molecular modeling of human P450c21 was then performed by MODELLER using the X-ray crystal structure of rabbit P450 2B4 as a template. RESULTS: The new three dimensional model of human P450c21 and the sequence alignment were found to be helpful in predicting the role of various amino acids in P450c21, especially those involved in heme binding and interaction with P450 oxidoreductase, the obligate electron donor. CONCLUSION: Our model will help in analyzing the genotype-phenotype relationship of P450c21 mutations which have not been tested for their functional activity in an in vitro assay.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: To evaluate the plaque composition obtained by virtual histology (VH) IVUS according to the clinical presentation and to compare those data to previously published histopathology data. METHODS AND RESULTS: VH was performed on 95 de novo significant lesions (>75% stenosis) in 85 patients [28 acute coronary syndrome (ACS) patients, 30 lesions; 57 stable angina pectoris (SAP) patients, 65 lesions]. There were a higher prevalence of positive remodelling (47 vs. 22%, P=0.013), thrombus (20 vs. 1.5%, P=0.0037), and echo-lucent area (23.3 vs. 7.7%, P=0.047) in ACS patients. At the minimal lumen site, fibrous plaque area was significantly larger in ACS lesions than in SAP lesions (66.0+/-10.7 vs. 61.4+/-8.9%, P=0.034), whereas necrotic core and dense calcium plaque area were smaller in ACS lesions (Necrotic core: 6.8+/-6.0 vs. 11.0+/-8.3%, P=0.02; Dense calcium: 2.6+/-3.0 vs. 4.9+/-5.8%, P=0.03). No differences in rate of thin cap fibroatheroma, thick fibrotheroma, or for the presence of multiple necrotic core layers were observed between both groups. CONCLUSION: Plaque composition obtained by VH-IVUS shows less necrotic core and more fibrous tissue in ACS compared to SAP lesions, which is in contradiction with previously published histopathologic data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Studies on airway remodeling in children with cystic fibrosis (CF) may be hampered by difficulty in obtaining evaluable endobronchial biopsy specimens because of large amounts of mucus and inflammation in the CF airway. We prospectively assessed how the quality of biopsy specimens obtained from children with CF compare with those from children with other airway diseases. METHODS: Fiberoptic bronchoscopy with endobronchial biopsy was performed in 67 CF children (age range, 0.2 to 16.8 years), 34 children with wheeze/asthma (W/A), and 64 control children with chronic respiratory symptoms. Up to three biopsy specimens were taken and stained with hematoxylin and eosin. Biopsy specimen size and structural composition were quantified using stereology. RESULTS: At least one evaluable biopsy specimen was obtained in 72% of CF children, in 79% of children with W/A, and in 72% of control subjects (difference was not significant). The use of large biopsy forceps (2.0 mm) rather than small biopsy forceps (1.0 mm) [odds ratio (OR), 5.8; 95% confidence interval (CI), 1.1 to 29.8; p = 0.037] and the number of biopsy specimens taken (odds ratio, 2.6; 95% confidence interval, 1.3 to 5.2; p = 0.006) significantly contributed to the success rate. Biopsy size and composition were similar between groups, except that CF children and those patients with W/A had a higher percentage of the biopsy specimen composed of muscle than did control subjects (median 6.2% and 9.7% vs 0.9%, respectively; p = 0.002). CONCLUSIONS: Biopsy size and quality are adequate for the study of airway remodeling in CF children as young as 2 months of age. Researchers should use large forceps when possible and take at least two biopsy specimens per patient. An increased airway smooth muscle content of the airway mucosa may contribute to the pathophysiology of CF lung disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The purposes of this study were to use delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) to evaluate the zonal distribution of glycosaminoglycans (GAGs) in normal cartilage and repair tissue and to use 3-T MRI to monitor the GAG content in matrix-associated autologous chondrocyte transplants. SUBJECTS AND METHODS: Fifteen patients who underwent matrix-associated autologous chondrocyte transplantation in the knee joint underwent MRI at baseline and 3-T follow-up MRI 1 year later. Total and zonal changes in longitudinal relaxivity (deltaR1) and relative deltaR1 were calculated for repair tissue and normal hyaline cartilage and compared by use of analysis of variance. RESULTS: There was a significant difference between the mean deltaR1 of repair tissue and that of reference cartilage at baseline and follow-up (p < 0.001). There was a significant increase in deltaR1 value and a decrease in GAG content from the deep layer to the superficial layer in the reference cartilage and almost no variation and significantly higher values for the repair tissue at both examinations. At 1-year follow-up imaging, there was a 22.7% decrease in deltaR1 value in the deep zone of the transplant. CONCLUSION: T1 mapping with dGEMRIC at 3 T shows the zonal structure of normal hyaline cartilage, highly reduced zonal variations in repair tissue, and a tendency toward an increase in global and zonal GAG content 1 year after transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical magnetic resonance imaging (MRI) is the method of choice for the non-invasive evaluation of articular cartilage defects and the follow-up of cartilage repair procedures. The use of cartilage-sensitive sequences and a high spatial-resolution technique enables the evaluation of cartilage morphology even in the early stages of disease, as well as assessment of cartilage repair. Sequences that offer high contrast between articular cartilage and adjacent structures, such as the fat-suppressed, 3-dimensional, spoiled gradient-echo sequence and the fast spin-echo sequence, are accurate and reliable for evaluating intrachondral lesions and surface defects of articular cartilage. These sequences can also be performed together in reasonable examination times. In addition to morphology, new MRI techniques provide insight into the biochemical composition of articular cartilage and cartilage repair tissue. These techniques enable the diagnosis of early cartilage degeneration and help to monitor the effect and outcome of various surgical and non-surgical cartilage repair therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The objective of this study was to evaluate the feasibility and reproducibility of high-resolution magnetic resonance imaging (MRI) and quantitative T2 mapping of the talocrural cartilage within a clinically applicable scan time using a new dedicated ankle coil and high-field MRI. MATERIALS AND METHODS: Ten healthy volunteers (mean age 32.4 years) underwent MRI of the ankle. As morphological sequences, proton density fat-suppressed turbo spin echo (PD-FS-TSE), as a reference, was compared with 3D true fast imaging with steady-state precession (TrueFISP). Furthermore, biochemical quantitative T2 imaging was prepared using a multi-echo spin-echo T2 approach. Data analysis was performed three times each by three different observers on sagittal slices, planned on the isotropic 3D-TrueFISP; as a morphological parameter, cartilage thickness was assessed and for T2 relaxation times, region-of-interest (ROI) evaluation was done. Reproducibility was determined as a coefficient of variation (CV) for each volunteer; averaged as root mean square (RMSA) given as a percentage; statistical evaluation was done using analysis of variance. RESULTS: Cartilage thickness of the talocrural joint showed significantly higher values for the 3D-TrueFISP (ranging from 1.07 to 1.14 mm) compared with the PD-FS-TSE (ranging from 0.74 to 0.99 mm); however, both morphological sequences showed comparable good results with RMSA of 7.1 to 8.5%. Regarding quantitative T2 mapping, measurements showed T2 relaxation times of about 54 ms with an excellent reproducibility (RMSA) ranging from 3.2 to 4.7%. CONCLUSION: In our study the assessment of cartilage thickness and T2 relaxation times could be performed with high reproducibility in a clinically realizable scan time, demonstrating new possibilities for further investigations into patient groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lymph nodes are strategically localized at the interfaces between the blood and lymphatic vascular system, delivering immune cells and antigens to the lymph node. As cellular junctions of endothelial cells actively regulate vascular permeability and cell traffic, we have investigated their molecular composition by performing an extensive immunofluorescence study for adherens and tight junction molecules, including vascular endothelium (VE)-cadherin, the vascular claudins 1, 3, 5 and 12, occludin, members of the junctional adhesion molecule family plus endothelial cell-selective adhesion molecule (ESAM)-1, platelet endothelial cell adhesion molecule-1, ZO-1 and ZO-2. We found that junctions of high endothelial venules (HEV), which serve as entry site for naive lymphocytes, are unique due to their lack of the endothelial cell-specific claudin-5. LYVE-1(+) sinus-lining endothelial cells form a diffusion barrier for soluble molecules that arrive at the afferent lymph and use claudin-5 and ESAM-1 to establish characteristic tight junctions. Analysis of the spatial relationship between the different vascular compartments revealed that HEV extend beyond the paracortex into the medullary sinuses, where they are protected from direct contact with the lymph by sinus-lining endothelial cells. The specific molecular architecture of cellular junctions present in blood and lymphatic vessel endothelium in peripheral lymph nodes establishes distinct barriers controlling the distribution of antigens and immune cells within this tissue.