18 resultados para Big Creek Lake Site


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature reconstructions for the end of the Pleistocene and the first half of the Holocene based on biotic proxies are rare for inland Europe around 49°N. We analysed a 7 m long sequence of lake deposits in the Vihorlat Mts in eastern Slovakia (820 m a.s.l.). Chironomid head capsules were used to reconstruct mean July temperature (TJuly), other proxies (diatoms, green algae, pollen, geochemistry) were used to reconstruct local environmental changes that might have affected the climate reconstruction, such as epilimnetic total phosphorus concentrations (TP), lake level changes and development of surrounding vegetation. During the Younger Dryas (YD), temperature fluctuated between 7 and 11 °C, with distinct, decadal to centennial scale variations, that agree with other palaeoclimate records in Europe such as δ18O content in stalagmites or Greenland ice cores. The results indicate that the site was somewhat colder than expected from the general south-to-north YD temperature gradient within Europe, possibly because of north-facing exposition. The warmer phases of the YD were characterised by low water level or even complete desiccation of the lake (12,200-12,400 cal yr BP). At the Late-Glacial/Holocene transition TJuly steeply increased from from 11 to 15.5 °C (11,700-11,400 cal yr BP) - the highest TJuly for entire sequence. This rapid climate change was reflected by all proxies as a compositional change and increasing species diversity. The open woodlands of Pinus, Betula, Larix and Picea were replaced by broad-leaved temperate forests dominated by Betula, later by Ulmus and finally by Corylus (ca 9700 cal yr BP). At the same time, input of eroded coarse-grained material into the lake decreased and organic matter (LOI) and biogenic silica increased. The Early-Holocene climate was rather stable till 8700 cal yr BP, with temporary decrease in TJuly around 11,200 cal yr BP. The lake was productive with a well-developed littoral, as indicated by both diatoms and chironomids. A distinct decline of TJuly to 10 °C between 8700 and 8000 cal yr BP was associated with decreasing chironomid diversity and increasing climate moistening indicated by pollen. Tychoplanktonic and phosphorus-demanding diatoms increased which might be explained by hydrological and land-cover changes. Later, a gradual warming started after 7000 cal yr BP and representation of macrophytes, periphytic diatoms and littoral chironomids increased. Our results suggest that the Holocene thermal maximum was taking place unusually early in the Holocene at our study site, but its timing might be affected by topography and mesoclimate. We further demonstrated that temperature changes had coincided with variations in local hydrology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The DEEP site sediment sequence obtained during the ICDP SCOPSCO project at Lake Ohrid was dated using tephrostratigraphic information, cyclostratigraphy, and orbital tuning through the marine isotope stages (MIS) 15-1. Although this approach is suitable for the generation of a general chronological framework of the long succession, it is insufficient to resolve more detailed palaeoclimatological questions, such as leads and lags of climate events between marine and terrestrial records or between different regions. Here, we demonstrate how the use of different tie points can affect cyclostratigraphy and orbital tuning for the period between ca. 140 and 70 ka and how the results can be correlated with directly/indirectly radiometrically dated Mediterranean marine and continental proxy records. The alternative age model presented here shows consistent differences with that initially proposed by Francke et al. (2015) for the same interval, in particular at the level of the MIS6-5e transition. According to this new age model, different proxies from the DEEP site sediment record support an increase of temperatures between glacial to interglacial conditions, which is almost synchronous with a rapid increase in sea surface temperature observed in the western Mediterranean. The results show how a detailed study of independent chronological tie points is important to align different records and to highlight asynchronisms of climate events. Moreover, Francke et al. (2016) have incorporated the new chronology proposed for tephra OH-DP-0499 in the final DEEP age model. This has reduced substantially the chronological discrepancies between the DEEP site age model and the model proposed here for the last glacial-interglacial transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We reconstruct the aquatic ecosystem interactions since the last interglacial period in the oldest, most diverse, hydrologically connected European lake system, by using palaeolimnological diatom and selected geochemistry data from Lake Ohrid “DEEP site” core and equivalent data from Lake Prespa core, Co1215. Driven by climate forcing, the lakes experienced two adaptive cycles during the last 92 ka: "interglacial and interstadial" and "glacial" cycle. The short-term ecosystems reorganizations, e.g. regime shifts within these cycles substantially differ between the lakes, as evident from the inferred amplitudes of variation. The deeper Lake Ohrid shifted between ultra oligo- and oligotrophic regimes in contrast to the much shallower Lake Prespa, which shifted from a deeper, (oligo-) mesotrophic to a shallower, eutrophic lake and vice versa. Due to the high level of ecosystem stability (e.g. trophic state, lake level), Lake Ohrid appears relatively resistant to external forcing, such as climate and environmental change. Recovering in a relatively short time from major climate change, Lake Prespa is a resilient ecosystem. At the DEEP site, the decoupling between the lakes' response to climate change is marked in the prolonged and gradual changes during the MIS 5/4 and 2/1 transitions. These response differences and the lakes' different physical and chemical properties may limit the influence of Lake Prespa on Lake Ohrid. Regime shifts of Lake Ohrid due to potential hydrological change in Lake Prespa are not evident in the data presented here. Moreover, a complete collapse of the ecosystems functionality and loss of their diatom communities did not happen in either lake for the period presented in the study.