56 resultados para Bell-Shaped Tuning
Resumo:
We have studied Au(55 nm)@SiO2 nanoparticles (NPs) on two low-index phases of gold and platinum single crystal electrodes in ClO4– and SO42– ion-containing electrolytes by both electrochemical methods and in-situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS). We showed the blocking of the electrode with surfactants originating from the synthesis of as-prepared SHINERS NPs. We introduce an efficient procedure to overcome this problem, which provides a fundamental platform for the application of SHINERS in surface electrochemistry and beyond. Our method is based on a hydrogen evolution treatment of the SHINERS-NP-modified single-crystal surfaces. The reliability of our preparation strategy is demonstrated in electrochemical SHINERS experiments on the potential-controlled adsorption and phase formation of pyridine on Au(hkl) and Pt(hkl). We obtained high-quality Raman spectra on these well-defined and structurally carefully characterized single-crystal surfaces. The analysis of the characteristic A1 vibrational modes revealed perfect agreement with the interpretation of single-crystal voltammetric and chronoamperometric experiments. Our study demonstrates that the SHINERS protocol developed in this work qualifies this Raman method as a pioneering approach with unique opportunities for in situ structure and reactivity studies at well-defined electrochemical solid/liquid interfaces.
Resumo:
STUDY DESIGN Technical note and case series. OBJECTIVE To introduce an innovative minimal-invasive surgical procedure reducing surgery time and blood loss in management of U-shaped sacrum fractures. SUMMARY OF BACKGROUND Despite their seldom appearance, U-shaped fractures can cause severe neurological deficits and surgical management difficulties. According to the nature of the injury normally occurring in multi-injured patients after a fall from height, a jump, or road traffic accident, U-shaped fractures create a spinopelvic dissociation and hence are highly unstable. In the past, time-consuming open procedures like large posterior constructs or shortening osteotomies with or without decompression were the method of choice, sacrificing spinal mobility. Insufficient restoration of sacrococcygeal angle and pelvic incidence with conventional techniques may have adverse long-term effects in these patients. METHODS In a consecutive series of 3 patients, percutaneous reduction of the fracture with Schanz pins inserted in either the pedicles of L5 or the S1 body and the posterior superior iliac crest was achieved. The Schanz pins act as lever, allowing a good manipulation of the fracture. The reduction is secured by a temporary external fixator to permit optimal restoration of pelvic incidence and sacral kyphosis. Insertion of 2 transsacral screws allow fixation of the restored spinopelvic alignment. RESULTS Anatomic alignment of the sacrum was possible in each case. Surgery time ranged from 90 to 155 minutes and the blood loss was <50 mL in all 3 cases. Two patients had very good results in the long term regarding maintenance of pelvic incidence and sacrococcygeal angle. One patient with previous cauda equina decompression had loss of correction after 6 months. CONCLUSIONS Percutaneous reduction and transsacral screw fixation offers a less invasive method for treating U-shaped fractures. This can be advantageous in treatment of patients with multiple injuries.
Resumo:
Poly(ɛ)caprolactone scaffolds have been electrospun directly into an auricular shaped conductive mould. Bovine chondrocytes were harvested from articular cartilage and seeded onto 16 of the produced scaffolds, which received either an ethanol (group A) or a plasma treatment (group B) for sterilisation before seeding. The seeded scaffolds were cultured for 3 weeks in vitro and analysed with regard to total DNA and GAG content as well as the expression of AGG, COL1, COL2, MMP3 and MMP13. Rapid cell proliferation and GAG accumulation was observed until week 2. However, total DNA and GAG content decreased again in week 3. qPCR data shows a slight increase in the expression of anabolic genes and a slight decrease for the catabolic genes, with a significant difference between the groups A and B only for COL2 and MMP13.
Resumo:
A 318-metre-long sedimentary profile drilled by the International Continental Scientific Drilling Program (ICDP) at Site 5011-1 in Lake El’gygytgyn, Far East Russian Arctic, has been analysed for its sedimentologic response to global climate modes by chronostratigraphic methods. The 12 km wide lake is sited off-centre in an 18 km large crater that was created by the impact of a meteorite 3.58 Ma ago. Since then sediments have been continuously deposited. For establishing their chronology, major reversals of the earth’s magnetic field provided initial tie points for the age model, confirming that the impact occurred in the earliest geomagnetic Gauss chron. Various stratigraphic parameters, reflecting redox conditions at the lake floor and climatic conditions in the catchment were tuned synchronously to Northern Hemisphere insolation variations and the marine oxygen isotope stack, respectively. Thus, a robust age model comprising more than 600 tie points could be defined. It could be shown that deposition of sediments in Lake El’gygytgyn occurred in concert with global climatic cycles. The upper �160m of sediments represent the past 3.3 Ma, equivalent to sedimentation rates of 4 to 5 cm ka−1, whereas the lower 160m represent just the first 0.3 Ma after the impact, equivalent to sedimentation rates in the order of 45 cm ka−1. This study also provides orbitally tuned ages for a total of 8 tephras deposited in Lake El’gygytgyn.
Resumo:
A positive relationship between species richness and island size is thought to emerge from an equilibrium between immigration and extinction rates, but the influence of species diversification on the form of this relationship is poorly understood. Here, we show that within-lake adaptive radiation strongly modifies the species-area relationship for African cichlid fishes. The total number of species derived from in situ speciation increases with lake size, resulting in faunas orders of magnitude higher in species richness than faunas assembled by immigration alone. Multivariate models provide evidence for added influence of lake depth on the species-area relationship. Diversity of clades representing within-lake radiations show responses to lake area, depth and energy consistent with limitation by these factors, suggesting that ecological factors influence the species richness of radiating clades within these ecosystems. Together, these processes produce lake fish faunas with highly variable composition, but with diversities that are well predicted by environmental variables.