53 resultados para Bayesian inference, Behaviour analysis, Security, Visual surveillance
Resumo:
Approximate models (proxies) can be employed to reduce the computational costs of estimating uncertainty. The price to pay is that the approximations introduced by the proxy model can lead to a biased estimation. To avoid this problem and ensure a reliable uncertainty quantification, we propose to combine functional data analysis and machine learning to build error models that allow us to obtain an accurate prediction of the exact response without solving the exact model for all realizations. We build the relationship between proxy and exact model on a learning set of geostatistical realizations for which both exact and approximate solvers are run. Functional principal components analysis (FPCA) is used to investigate the variability in the two sets of curves and reduce the dimensionality of the problem while maximizing the retained information. Once obtained, the error model can be used to predict the exact response of any realization on the basis of the sole proxy response. This methodology is purpose-oriented as the error model is constructed directly for the quantity of interest, rather than for the state of the system. Also, the dimensionality reduction performed by FPCA allows a diagnostic of the quality of the error model to assess the informativeness of the learning set and the fidelity of the proxy to the exact model. The possibility of obtaining a prediction of the exact response for any newly generated realization suggests that the methodology can be effectively used beyond the context of uncertainty quantification, in particular for Bayesian inference and optimization.
Resumo:
Seizure freedom in patients suffering from pharmacoresistant epilepsies is still not achieved in 20–30% of all cases. Hence, current therapies need to be improved, based on a more complete understanding of ictogenesis. In this respect, the analysis of functional networks derived from intracranial electroencephalographic (iEEG) data has recently become a standard tool. Functional networks however are purely descriptive models and thus are conceptually unable to predict fundamental features of iEEG time-series, e.g., in the context of therapeutical brain stimulation. In this paper we present some first steps towards overcoming the limitations of functional network analysis, by showing that its results are implied by a simple predictive model of time-sliced iEEG time-series. More specifically, we learn distinct graphical models (so called Chow–Liu (CL) trees) as models for the spatial dependencies between iEEG signals. Bayesian inference is then applied to the CL trees, allowing for an analytic derivation/prediction of functional networks, based on thresholding of the absolute value Pearson correlation coefficient (CC) matrix. Using various measures, the thus obtained networks are then compared to those which were derived in the classical way from the empirical CC-matrix. In the high threshold limit we find (a) an excellent agreement between the two networks and (b) key features of periictal networks as they have previously been reported in the literature. Apart from functional networks, both matrices are also compared element-wise, showing that the CL approach leads to a sparse representation, by setting small correlations to values close to zero while preserving the larger ones. Overall, this paper shows the validity of CL-trees as simple, spatially predictive models for periictal iEEG data. Moreover, we suggest straightforward generalizations of the CL-approach for modeling also the temporal features of iEEG signals.
Resumo:
Thirty microsatellite markers were analysed in 1426 goats from 45 traditional or rare breeds in 15 European and Middle Eastern countries. In all populations inbreeding was indicated by heterozygosity deficiency (mean FIS = 0.10). Genetic differentiation between breeds was moderate with a mean FST value of 0.07, but for most (c. 71%) northern and central European breeds, individuals could be assigned to their breeds with a success rate of more than 80%. Bayesian-based clustering analysis of allele frequencies and multivariate analysis revealed at least four discrete clusters: eastern Mediterranean (Middle East), central Mediterranean, western Mediterranean and central/northern Europe. About 41% of the genetic variability among the breeds could be explained by their geographical origin. A decrease in genetic diversity from the south-east to the north-west was accompanied by an increase in the level of differentiation at the breed level. These observations support the hypothesis that domestic livestock migrated from the Middle East towards western and northern Europe and indicate that breed formation was more systematic in north-central Europe than in the Middle East. We propose that breed differentiation and molecular diversity are independent criteria for conservation.
Resumo:
BACKGROUND Empirical research has illustrated an association between study size and relative treatment effects, but conclusions have been inconsistent about the association of study size with the risk of bias items. Small studies give generally imprecisely estimated treatment effects, and study variance can serve as a surrogate for study size. METHODS We conducted a network meta-epidemiological study analyzing 32 networks including 613 randomized controlled trials, and used Bayesian network meta-analysis and meta-regression models to evaluate the impact of trial characteristics and study variance on the results of network meta-analysis. We examined changes in relative effects and between-studies variation in network meta-regression models as a function of the variance of the observed effect size and indicators for the adequacy of each risk of bias item. Adjustment was performed both within and across networks, allowing for between-networks variability. RESULTS Imprecise studies with large variances tended to exaggerate the effects of the active or new intervention in the majority of networks, with a ratio of odds ratios of 1.83 (95% CI: 1.09,3.32). Inappropriate or unclear conduct of random sequence generation and allocation concealment, as well as lack of blinding of patients and outcome assessors, did not materially impact on the summary results. Imprecise studies also appeared to be more prone to inadequate conduct. CONCLUSIONS Compared to more precise studies, studies with large variance may give substantially different answers that alter the results of network meta-analyses for dichotomous outcomes.
Resumo:
BACKGROUND: Co-speech gestures are omnipresent and a crucial element of human interaction by facilitating language comprehension. However, it is unclear whether gestures also support language comprehension in aphasic patients. Using visual exploration behavior analysis, the present study aimed to investigate the influence of congruence between speech and co-speech gestures on comprehension in terms of accuracy in a decision task. METHOD: Twenty aphasic patients and 30 healthy controls watched videos in which speech was either combined with meaningless (baseline condition), congruent, or incongruent gestures. Comprehension was assessed with a decision task, while remote eye-tracking allowed analysis of visual exploration. RESULTS: In aphasic patients, the incongruent condition resulted in a significant decrease of accuracy, while the congruent condition led to a significant increase in accuracy compared to baseline accuracy. In the control group, the incongruent condition resulted in a decrease in accuracy, while the congruent condition did not significantly increase the accuracy. Visual exploration analysis showed that patients fixated significantly less on the face and tended to fixate more on the gesturing hands compared to controls. CONCLUSION: Co-speech gestures play an important role for aphasic patients as they modulate comprehension. Incongruent gestures evoke significant interference and deteriorate patients' comprehension. In contrast, congruent gestures enhance comprehension in aphasic patients, which might be valuable for clinical and therapeutic purposes.
Resumo:
OBJECTIVE: To determine the effect of glucosamine, chondroitin, or the two in combination on joint pain and on radiological progression of disease in osteoarthritis of the hip or knee. Design Network meta-analysis. Direct comparisons within trials were combined with indirect evidence from other trials by using a Bayesian model that allowed the synthesis of multiple time points. MAIN OUTCOME MEASURE: Pain intensity. Secondary outcome was change in minimal width of joint space. The minimal clinically important difference between preparations and placebo was prespecified at -0.9 cm on a 10 cm visual analogue scale. DATA SOURCES: Electronic databases and conference proceedings from inception to June 2009, expert contact, relevant websites. Eligibility criteria for selecting studies Large scale randomised controlled trials in more than 200 patients with osteoarthritis of the knee or hip that compared glucosamine, chondroitin, or their combination with placebo or head to head. Results 10 trials in 3803 patients were included. On a 10 cm visual analogue scale the overall difference in pain intensity compared with placebo was -0.4 cm (95% credible interval -0.7 to -0.1 cm) for glucosamine, -0.3 cm (-0.7 to 0.0 cm) for chondroitin, and -0.5 cm (-0.9 to 0.0 cm) for the combination. For none of the estimates did the 95% credible intervals cross the boundary of the minimal clinically important difference. Industry independent trials showed smaller effects than commercially funded trials (P=0.02 for interaction). The differences in changes in minimal width of joint space were all minute, with 95% credible intervals overlapping zero. Conclusions Compared with placebo, glucosamine, chondroitin, and their combination do not reduce joint pain or have an impact on narrowing of joint space. Health authorities and health insurers should not cover the costs of these preparations, and new prescriptions to patients who have not received treatment should be discouraged.
Core networks for visual-concrete and abstract thought content: a brain electric microstate analysis
Resumo:
Commonality of activation of spontaneously forming and stimulus-induced mental representations is an often made but rarely tested assumption in neuroscience. In a conjunction analysis of two earlier studies, brain electric activity during visual-concrete and abstract thoughts was studied. The conditions were: in study 1, spontaneous stimulus-independent thinking (post-hoc, visual imagery or abstract thought were identified); in study 2, reading of single nouns ranking high or low on a visual imagery scale. In both studies, subjects' tasks were similar: when prompted, they had to recall the last thought (study 1) or the last word (study 2). In both studies, subjects had no instruction to classify or to visually imagine their thoughts, and accordingly were not aware of the studies' aim. Brain electric data were analyzed into functional topographic brain images (using LORETA) of the last microstate before the prompt (study 1) and of the word-type discriminating event-related microstate after word onset (study 2). Conjunction analysis across the two studies yielded commonality of activation of core networks for abstract thought content in left anterior superior regions, and for visual-concrete thought content in right temporal-posterior inferior regions. The results suggest that two different core networks are automatedly activated when abstract or visual-concrete information, respectively, enters working memory, without a subject task or instruction about the two classes of information, and regardless of internal or external origin, and of input modality. These core machineries of working memory thus are invariant to source or modality of input when treating the two types of information.
Resumo:
Recombinant human growth hormone (rhGH) therapy is used in the long-term treatment of children with growth disorders, but there is considerable treatment response variability. The exon 3-deleted growth hormone receptor polymorphism (GHR(d3)) may account for some of this variability. The authors performed a systematic review (to April 2011), including investigator-only data, to quantify the effects of the GHR(fl-d3) and GHR(d3-d3) genotypes on rhGH therapy response and used a recently established Bayesian inheritance model-free approach to meta-analyze the data. The primary outcome was the 1-year change-in-height standard-deviation score for the 2 genotypes. Eighteen data sets from 12 studies (1,527 children) were included. After several prior assumptions were tested, the most appropriate inheritance model was codominant (posterior probability = 0.93). Compared with noncarriers, carriers had median differences in 1-year change-in-height standard-deviation score of 0.09 (95% credible interval (CrI): 0.01, 0.17) for GHR(fl-d3) and of 0.14 (95% CrI: 0.02, 0.26) for GHR(d3-d3). However, the between-study standard deviation of 0.18 (95% CrI: 0.10, 0.33) was considerable. The authors tested by meta-regression for potential modifiers and found no substantial influence. They conclude that 1) the GHR(d3) polymorphism inheritance is codominant, contrasting with previous reports; 2) GHR(d3) genotypes account for modest increases in rhGH effects in children; and 3) considerable unexplained variability in responsiveness remains.
Resumo:
Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A < AV > V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis.
Resumo:
Urban agriculture is a phenomenon that can be observed world-wide, particularly in cities of devel- oping countries. It is contributing significantly to food security and food safety and has sustained livelihood of the urban and peri-urban low income dwe llers in developing countries for many years. Population increase due to rural-urban migration and natural - formal as well as informal - urbani- sation are competing with urban farming for available space and scarce water resources. A mul- titemporal and multisensoral urban change analysis over the period of 25 years (1982-2007) was performed in order to measure and visualise the urban expansion along the Kizinga and Mzinga valley in the south of Dar Es Salaam. Airphotos and VHR satellite data were analysed by using a combination of a composition of anisotropic textural measures and spectral information. The study revealed that unplanned built-up area is expanding continuously, and vegetation covers and agricultural lands decline at a fast rate. The validation showed that the overall classification accuracy varied depending on the database. The extracted built-up areas were used for visual in- terpretation mapping purposes and served as information source for another research project. The maps visualise an urban congestion and expansion of nearly 18% of the total analysed area that had taken place in the Kizinga valley between 1982 and 2007. The same development can be ob- served in the less developed and more remote Mzinga valley between 1981 and 2002. Both areas underwent fast changes where land prices still tend to go up and an influx of people both from rural and urban areas continuously increase the density with the consequence of increasing multiple land use interests.
Resumo:
BACKGROUND: After bovine spongiform encephalopathy (BSE) emerged in European cattle livestock in 1986 a fundamental question was whether the agent established also in the small ruminants' population. In Switzerland transmissible spongiform encephalopathies (TSEs) in small ruminants have been monitored since 1990. While in the most recent TSE cases a BSE infection could be excluded, for historical cases techniques to discriminate scrapie from BSE had not been available at the time of diagnosis and thus their status remained unclear. We herein applied state-of-the-art techniques to retrospectively classify these animals and to re-analyze the affected flocks for secondary cases. These results were the basis for models, simulating the course of TSEs over a period of 70 years. The aim was to come to a statistically based overall assessment of the TSE situation in the domestic small ruminant population in Switzerland. RESULTS: In sum 16 TSE cases were identified in small ruminants in Switzerland since 1981, of which eight were atypical and six were classical scrapie. In two animals retrospective analysis did not allow any further classification due to the lack of appropriate tissue samples. We found no evidence for an infection with the BSE agent in the cases under investigation. In none of the affected flocks, secondary cases were identified. A Bayesian prevalence calculation resulted in most likely estimates of one case of BSE, five cases of classical scrapie and 21 cases of atypical scrapie per 100'000 small ruminants. According to our models none of the TSEs is considered to cause a broader epidemic in Switzerland. In a closed population, they are rather expected to fade out in the next decades or, in case of a sporadic origin, may remain at a very low level. CONCLUSIONS: In summary, these data indicate that despite a significant epidemic of BSE in cattle, there is no evidence that BSE established in the small ruminant population in Switzerland. Classical and atypical scrapie both occur at a very low level and are not expected to escalate into an epidemic. In this situation the extent of TSE surveillance in small ruminants requires reevaluation based on cost-benefit analysis.
Resumo:
A study was designed to investigate the effect of medetomidine sedation on quantitative electroencephalography (q-EEG) in healthy young and adult cats to determine objective guidelines for diagnostic EEG recordings and interpretation. Preliminary visual examination of EEG recordings revealed high-voltage low-frequency background activity. Spindles, k-complexes and vertex sharp transients characteristic of sleep or sedation were superimposed on a low background activity. Neither paroxysmal activity nor EEG burst-suppression were observed. The spectral analysis of q-EEG included four parameters, namely, relative power (%), and mean, median and peak frequency (Hz) of all four frequency bands (delta, theta, alpha and beta). The findings showed a prevalence of slow delta and theta rhythms as opposed to fast alpha and beta rhythms in both young (group A) and adult (group B) cats. A posterior gradient was reported for the theta band and an anterior gradient for the alpha and beta bands in both groups, respectively. The relative power value in group B compared to group A was significantly higher for theta, alpha and beta bands, and lower for the delta band. The mean and median frequency values in group B was significantly higher for delta, theta and beta bands and lower for the alpha band. The study has shown that a medetomidine sedation protocol for feline EEG may offer a method for investigating bio-electrical cortical activity. The use of q-EEG analysis showed a decrease in high frequency bands and increased activity of the low frequency band in healthy cats under medetomidine sedation.