34 resultados para BONE-TISSUE
Immunohistochemical localization of RANK, RANKL and OPG in healthy and arthritic canine elbow joints
Resumo:
OBJECTIVE: To determine if the receptor activator of nuclear factor-kappaB-receptor activator of nuclear factor-kappaB ligand-osteoprotegerin (RANK-RANKL-OPG) system is active in bone remodeling in dogs and, if so, whether differences in expression of these mediators occur in healthy and arthritic joints. STUDY DESIGN: Experimental study. SAMPLE POPULATION: Fragmented processus coronoidei (n=20) were surgically removed from dogs with elbow arthritis and 5 corresponding healthy samples from dogs euthanatized for reasons other than elbow joint disease. METHODS: Bright-field immunohistochemistry and high-resolution fluorescence microscopy were used to investigate the distribution of RANK, RANKL, and OPG in healthy and arthritic joints. RESULTS: All 3 molecules were identified by immunostaining of canine bone tissue. In elbow dysplasia, the number of RANK-positive osteoclasts was increased. In their vicinity, cells expressing RANKL, a mediator of osteoclast activation, were abundant whereas the number of osteoblasts having the potential to limit osteoclastogenesis and bone resorption via OPG was few. CONCLUSIONS: The RANK-RANKL-OPG system is active in bone remodeling in dogs. In elbow dysplasia, a surplus of molecules promoting osteoclastogenesis was evident and is indicative of an imbalance between the mediators regulating bone resorption and bone formation. Both OPG and neutralizing antibodies against RANKL have the potential to counterbalance bone resorption. CLINICAL RELEVANCE: Therapeutic use of neutralizing antibodies against RANKL to inhibit osteoclast activation warrants further investigation.
Resumo:
INTRODUCTION: Using a rat model, we evaluated the kinetics and histomorphometry of ectopic bone formation in association with biomimetic implant coatings containing BMP-2. MATERIALS AND METHODS: One experimental and three control groups were set up: titanium-alloy discs coated with a biomimetically co-precipitated layer of calcium phosphate and BMP-2 [1.7 microg per disc (incorporated-BMP group)]; uncoated discs (control); discs biomimetically coated with a layer of calcium phosphate alone (control); and discs biomimetically coated with a layer of calcium phosphate bearing superficially adsorbed BMP-2 [0.98 microg per disc (control)]. Discs (n = 6 per group) were implanted subcutaneously in rats and retrieved at 7-day intervals over a period of 5 weeks for kinetic, histomorphometrical, morphological and histochemical analyses. RESULTS: In the incorporated-BMP-2 group, osteogenic activity was first observed 2 weeks after implantation and thereafter continued unabated until the end of the monitoring period. The net weekly rates of bone formation per disc were 5.8 mm3 at 2 weeks and 3.64 mm3 at 5 weeks. The total volumes of bone formed per disc at these junctures were 5.8 mm3 and 10.3 mm3, respectively. Bone tissue, which was formed by a direct ossification mechanism, was deposited at distances of up to 340 microm from the implant surfaces. The biomimetic coatings were degraded gradually, initially by foreign body giant cells alone and then also by osteoclasts. Forty percent of the coating material (and thus presumably of the incorporated BMP-2) remained at the end of the monitoring period. Hence, 60% of the incorporated BMP-2 had been released. At this 5-week juncture, no bone tissue was associated with any of the control implants. CONCLUSION: BMP-2 incorporated into biomimetic calcium phosphate coatings is capable not only of inducing bone formation at an ectopic site in vivo but also of doing so with a very high potency at a low pharmacological level, and of sustaining this activity for a considerable period of time. The sustainment of osteogenic activity is of great clinical importance for the osseointegration of dental and orthopedic implants.
Resumo:
In orthopaedic and dental implantology, novel tools and techniques are being sought to improve the regeneration of bone tissue. Numerous attempts have been made to enhance the osteoconductivity of titanium prostheses, including modifications in their surface properties and coating with layers of calcium phosphate. The technique whereby such layers are produced has recently undergone a revolutionary change, which has had profound consequences for their potential to serve as drug-carrier systems. Hitherto, calcium phosphate layers were deposited upon the surfaces of metal implants under highly unphysiological physical conditions, which precluded the incorporation of proteinaceous osteoinductive drugs. These agents could only be adsorbed, superficially, upon preformed layers. Such superficially adsorbed molecules are released too rapidly within a biological milieu to be effective in their osteoinductive capacity. Now, it is possible to deposit calcium phosphate layers under physiological conditions of temperature and pH by the so-called biomimetic process, during which bioactive agents can be coprecipitated. Since these molecules are integrated into the inorganic latticework, they are released gradually in vivo as the layer undergoes degradation. This feature enhances the capacity of these coatings to act as a carrier system for osteogenic agents.
Resumo:
The single Hochdorf burial was found in 1887 during construction work in the Canton of Lucerne, Switzerland. It dates from between 320 and 250 BC. The calvarium, the left half of the pelvis and the left femur were preserved. The finding shows an unusual bony alteration of the skull. The aim of this study was to obtain a differential diagnosis and to examine the skull using various methods. Sex and age were determined anthropologically. Radiological examinations were performed with plain X-ray imaging and a multislice computed tomography (CT) scanner. For histological analysis, samples of the lesion were taken. The pathological processing included staining after fixation, decalcification, and paraffin embedding. Hard-cut sections were also prepared. The individual was female. The age at death was between 30 and 50 years. There is an intensely calcified bone proliferation at the right side of the os frontalis. Plain X-ray and CT imaging showed a large sclerotic lesion in the area of the right temple with a partly bulging appearance. The inner boundary of the lesion shows multi-edged irregularities. There is a diffuse thickening of the right side. In the left skull vault, there is a mix of sclerotic areas and areas which appear to be normal with a clear differentiation between tabula interna, diploë and tabula externa. Histology showed mature organised bone tissue. Radiological and histological findings favour a benign condition. Differential diagnoses comprise osteomas which may occur, for example, in the setting of hereditary adenomatous polyposis coli related to Gardner syndrome.
Resumo:
Laser irradiation has numerous favorable characteristics, such as ablation or vaporization, hemostasis, biostimulation (photobiomodulation) and microbial inhibition and destruction, which induce various beneficial therapeutic effects and biological responses. Therefore, the use of lasers is considered effective and suitable for treating a variety of inflammatory and infectious oral conditions. The CO2 , neodymium-doped yttrium-aluminium-garnet (Nd:YAG) and diode lasers have mainly been used for periodontal soft-tissue management. With development of the erbium-doped yttrium-aluminium-garnet (Er:YAG) and erbium, chromium-doped yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers, which can be applied not only on soft tissues but also on dental hard tissues, the application of lasers dramatically expanded from periodontal soft-tissue management to hard-tissue treatment. Currently, various periodontal tissues (such as gingiva, tooth roots and bone tissue), as well as titanium implant surfaces, can be treated with lasers, and a variety of dental laser systems are being employed for the management of periodontal and peri-implant diseases. In periodontics, mechanical therapy has conventionally been the mainstream of treatment; however, complete bacterial eradication and/or optimal wound healing may not be necessarily achieved with conventional mechanical therapy alone. Consequently, in addition to chemotherapy consisting of antibiotics and anti-inflammatory agents, phototherapy using lasers and light-emitting diodes has been gradually integrated with mechanical therapy to enhance subsequent wound healing by achieving thorough debridement, decontamination and tissue stimulation. With increasing evidence of benefits, therapies with low- and high-level lasers play an important role in wound healing/tissue regeneration in the treatment of periodontal and peri-implant diseases. This article discusses the outcomes of laser therapy in soft-tissue management, periodontal nonsurgical and surgical treatment, osseous surgery and peri-implant treatment, focusing on postoperative wound healing of periodontal and peri-implant tissues, based on scientific evidence from currently available basic and clinical studies, as well as on case reports.
Resumo:
The aim of the present study is to evaluate the clinical and histologic healing of deep intrabony defects treated with guided tissue regeneration (GTR) with a collagen membrane from bovine pericardium and implantation of granular bovine bone biomaterial.
Resumo:
Cell therapies for articular cartilage defects rely on expanded chondrocytes. Mesenchymal stem cells (MSC) represent an alternative cell source should their hypertrophic differentiation pathway be prevented. Possible cellular instruction between human articular chondrocytes (HAC) and human bone marrow MSC was investigated in micromass pellets. HAC and MSC were mixed in different percentages or incubated individually in pellets for 3 or 6 weeks with and without TGF-beta1 and dexamethasone (±T±D) as chondrogenic factors. Collagen II, collagen X and S100 protein expression were assessed using immunohistochemistry. Proteoglycan synthesis was evaluated applying the Bern score and quantified using dimethylmethylene blue dye binding assay. Alkaline phosphatase activity (ALP) was detected on cryosections and soluble ALP measured in pellet supernatants. HAC alone generated hyaline-like discs, while MSC formed spheroid pellets in ±T±D. Co-cultured pellets changed from disc to spheroid shape with decreasing number of HAC, and displayed random cell distribution. In -T-D, HAC expressed S100, produced GAG and collagen II, and formed lacunae, while MSC did not produce any cartilage-specific proteins. Based on GAG, collagen type II and S100 expression chondrogenic differentiation occurred in -T-D MSC co-cultures. However, quantitative experimental GAG and DNA values did not differ from predicted values, suggesting only HAC contribution to GAG production. MSC produced cartilage-specific matrix only in +T+D but underwent hypertrophy in all pellet cultures. In summary, influence of HAC on MSC was restricted to early signs of neochondrogenesis. However, MSC did not contribute to the proteoglycan deposition, and HAC could not prevent hypertrophy of MSC induced by chondrogenic stimuli.
Resumo:
The enzyme tissue non-specific alkaline phosphatase (TNAP) belongs to the ectophosphatase family. It is present in large amounts in bone in which it plays a role in mineralization but little is known about its function in other tissues. Arguments are accumulating for its involvement in the brain, in particular in view of the neurological symptoms accompanying human TNAP deficiencies. We have previously shown, by histochemistry, alkaline phosphatase (AP) activity in monkey brain vessels and parenchyma in which AP exhibits specific patterns. Here, we clearly attribute this activity to TNAP expression rather than to other APs in primates (human and marmoset) and in rodents (rat and mouse). We have not found any brain-specific transcripts but our data demonstrate that neuronal and endothelial cells exclusively express the bone TNAP transcript in all species tested, except in mouse neurons in which liver TNAP transcripts have also been detected. Moreover, we highlight the developmental regulation of TNAP expression; this also acts during neuronal differentiation. Our study should help to characterize the regulation of the expression of this ectophosphatase in various cell types of the central nervous system.
Resumo:
A high (18)F-fluorodeoxyglucose (FDG) uptake by positron emission tomography/computed tomography (PET/CT) imaging in sarcomas of adults has been reported. The current study aimed at defining the degree of (18)F-FDG uptake of pediatric sarcomas. This retrospective study included 29 patients (23 males, 6 females; mean age 14 ± 5 years) with soft tissue (n = 9) or bone (n = 20) sarcomas. Twenty-two patients (76%) underwent (18)F-FDG PET/CT and 7 (24%) had dedicated (18)F-FDG PET studies. Tumor (18)F-FDG uptake was quantified by standard uptake value (SUV)(max) and tumor-to-liver ratios (SUV ratios; tumor SUV(max)/liver SUV(mean)). Tumor SUV(max) and SUV ratios were correlated with tumor Ki-67 expression. SUV(max) ranged from 1.4 to 24 g/mL (median 2.5 g/mL) in soft tissue sarcomas and 1.6 to 20.4 g/mL (median 6.9 g/mL) in bone sarcomas (P = .03), and from 1.6 to 9.2 g/mL (median 3.9 g/mL) and 3.5 to 20.4 g/mL (median 12 g/mL) in Ewing sarcoma and osteosarcoma, respectively (P = .009). Tumor SUV ratios ranged from 0.8 to 8.7 (median 1.9) in soft tissue sarcomas and 1.4 to 8.9 (median 3.8) in bone sarcomas (P = .08). Ewing sarcoma had a significantly lower tumor SUV ratio than osteosarcoma (P = .01). Ki-67 expression correlated significantly with the (18)F-FDG uptake in bone but not in soft tissue sarcomas. All sarcomas were visualized by (18)F-FDG PET/CT imaging. A higher (18)F-FDG uptake was observed in osteosarcoma than in Ewing and soft tissue sarcomas. The results of this study suggest that the degree of tumor (18)F-FDG uptake is sufficient to allow for monitoring of therapeutic responses in pediatric sarcomas.
Resumo:
Pulmonary fat embolism (PFE) is frequently encountered in blunt trauma. The clinical manifestation ranges from no impairment in light cases to death due to right-sided heart failure or hypoxaemia in severe cases. Occasionally, pulmonary fat embolism can give rise to a fat embolism syndrome (FES), which is marked by multiorgan failure, respiratory disorders, petechiae and often death. It is well known that fractures of long bones can lead to PFE. Several authors have argued that PFE can arise due to mere soft tissue injury in the absence of fractures, a claim other authors disagree upon. In this study, we retrospectively examined 50 victims of blunt trauma with regard to grade and extent of fractures and crushing of subcutaneous fatty tissue and presence and severity of PFE. Our results indicate that PFE can arise due to mere crushing of subcutaneous fat and that the fracture grade correlated well with PFE severity (p = 0.011). The correlation between PFE and the fracture severity (body regions affected by fractures and fracture grade) showed a lesser significant correlation (p = 0.170). The survival time (p = 0.567), the amount of body regions affected by fat crushing (p = 0.336) and the fat crush grade (p = 0.485) did not correlate with the PFE grade, nor did the amount of body regions affected by fractures. These results may have clinical implications for the assessment of a possible FES development, as, if the risk of a PFE is known, preventive steps can be taken.
Resumo:
Temporal hollowing due to temporal muscle atrophy after standard skull base surgery is common. Various techniques have been previously described to correct the disfiguring defect. Most often reconstruction is performed using freehand molded polymethylmethacrylate cement. This method and material are insufficient in terms of aesthetic results and implant characteristics. We herein propose reconstruction of such defects with a polyetheretherketone (PEEK)-based patient-specific implant (PSI) including soft-tissue augmentation to preserve normal facial topography. We describe a patient who presented with a large temporo-orbital hemangioma that had been repaired with polymethylmethacrylate 25 years earlier. Because of a toxic skin atrophy fistula, followed by infection and meningitis, this initial implant had to be removed. The large, disfiguring temporo-orbital defect was reconstructed with a PEEK-based PSI. The lateral orbital wall and the temporal muscle atrophy were augmented with computer-aided design and surface modeling techniques. The operative procedure to implant and adopt the reconstructed PEEK-based PSI was simple, and an excellent cosmetic outcome was achieved. The postoperative clinical course was uneventful over a 5-year follow-up period. Polyetheretherketone-based combined bony and soft contour remodeling is a feasible and effective method for cranioplasty including combined bone and soft-tissue reconstruction of temporo-orbital defects. Manual reconstruction of this cosmetically delicate area carries an exceptional risk of disfiguring results. Augmentation surgery in this anatomic location needs accurate PSIs to achieve satisfactory cosmetic results. The cosmetic outcome achieved in this case is superior compared with previously reported techniques.
Resumo:
OBJECTIVES: This study reports the secondary analysis of a randomized-controlled clinical trial designed to assess the efficacy of deproteinized bovine mineral and a collagen membrane in the treatment of intrabony defects. The specific aims of this report are (1) to analyse the radiographic bone changes 1 year after therapy and (2) to assess the association between radiographic defect angle and treatment outcomes. MATERIALS AND METHODS: Baseline and 12-month radiographs were collected from 120 patients with advanced chronic periodontitis from 10 centres in seven countries as part of a multi-centre clinical trial. All patients had at least one intrabony defect > or =3 mm in depth. The treatment consisted of simplified or modified papilla preservation flaps to access the defect. After debridement of the area, a deproteinized bovine mineral and a collagen membrane were applied in the test subjects, and omitted in the controls. Main outcome measures were radiographic bone fill and defect resolution 1 year after surgery. RESULTS: One hundred and twenty pairs of radiographs were obtained, of which 110 pairs were measurable (57 tests and 53 controls). One year after treatment, radiographic resolution of the intrabony component was significantly higher in the test group (3.2+/-1.7 mm) when compared with the controls (1.7+/-1.9 mm). Multivariate analysis indicated that the treatment and the baseline radiographic depth of the intrabony defect significantly influenced the radiographic bone fill of the intrabony defect 1 year following treatment. The percentage of resolution of the defect was influenced by the treatment provided and the baseline plaque score. The baseline radiographic defect angle did not show a significant impact on the clinical and radiographic outcomes. CONCLUSIONS: Regenerative periodontal surgery with a deproteinized bovine bone mineral and a collagen membrane offered additional benefits in terms of radiographic resolution of the intrabony defect and predictability of outcomes with respect to papilla preservation flaps alone.
Resumo:
OBJECTIVES: Bone formation during guided tissue regeneration is a tightly regulated process involving cells, extracellular matrix and growth factors. The aims of this study were (i) to examine the expression of cyclooxygenase-2 (COX-2) during bone regeneration and (ii) the effects of selective COX-2 inhibition on osseous regeneration and growth factor expression in the rodent femur model. MATERIAL AND METHODS: A standardized transcortical defect of 5 x 1.5 mm was prepared in the femur of 12 male rats and a closed half-cylindrical titanium chamber was placed over the defect. The expression of COX-2 and of platelet-derived growth factor-B (PDGF-B), bone morphogenetic protein-6 (BMP-6) and insulin-like growth factor-I/II (IGF-I/II) was analyzed at Days 3, 7, 21 and 28 semiquantitatively by reverse transcriptase-polymerase chain reaction and immunohistochemistry. The effects of COX-2 inhibition by intraperitoneal injection of NS-398 (3 mg/kg/day) were analyzed in five additional animals sacrificed at Day 14. RESULTS: Histomorphometry revealed that new bone formation occurred in the cortical defect area as well as in the supracortical region, i.e. region within the chamber by Day 7 and increased through Day 28. Immunohistochemical evidence of COX-2 and PDGF-B levels were observed early (i.e. Day 3) and decreased rapidly by Day 7. BMP-6 expression was maximal at Day 3 and slowly declined by Day 28. In contrast, IGF-I/II expression gradually increased during the 28-day period. Systemic administration NS-398 caused a statistically significant reduction (P<0.05) in new bone formation (25-30%) and was associated with a statistically significant reduction in BMP-6 protein and mRNA expression (50% and 65% at P<0.05 and P<0.01, respectively). PDGF-B mRNA or protein expression was not affected by NS-398 treatment. CONCLUSION: COX-2 inhibition resulted in reduced BMP-6 expression and impaired osseous regeneration suggesting an important role for COX-2-induced signaling in BMP synthesis and new bone formation.
Resumo:
OBJECTIVE: To compare the potential of bone morphogenetic proteins 2 and 7 (BMP-2 and BMP-7) and transforming growth factor beta1 (TGFbeta1) to effect the chondrogenic differentiation of synovial explants by analyzing the histologic, biochemical, and gene expression characteristics of the cartilaginous tissues formed. METHODS: Synovial explants derived from the metacarpal joints of calves were cultured in agarose. Initially, BMP-2 was used to evaluate the chondrogenic potential of the synovial explants under different culturing conditions. Under appropriate conditions, the chondrogenic effects of BMP-2, BMP-7, and TGFbeta1 were then compared. The differentiated tissue was characterized histologically, histomorphometrically, immunohistochemically, biochemically, and at the gene expression level. RESULTS: BMP-2 induced the chondrogenic differentiation of synovial explants in a dose- and time-dependent manner under serum- and dexamethasone-free conditions. The expression levels of cartilage-related genes increased in a time-dependent manner. BMP-7 was more potent than BMP-2 in inducing chondrogenesis, but the properties of the differentiated tissue were similar in each case. The type of cartilaginous tissue formed under the influence of TGFbeta1 differed in terms of both cell phenotype and gene expression profiles. CONCLUSION: The 3 tested members of the TGFbeta superfamily have different chondrogenic potentials and induce the formation of different types of cartilaginous tissue. To effect the full differentiation of synovial explants into a typically hyaline type of articular cartilage, further refinement of the stimulation conditions is required. This might be achieved by the simultaneous application of several growth factors.