82 resultados para BLOOD PLASMA
Resumo:
Metabolic and endocrine adaptations to support milk production during the transition period vary between individual cows. This variation between cows to adapt to lactation may have a genetic basis. The present field study was carried out to determine hepatic adaptations occurring from late pregnancy through early lactation by measuring mRNA abundance of candidate genes in dairy cows on-farm. Additionally, the objective was to observe the diversity in inter-individual variation for the candidate genes that may give indications where individual adaptations at a molecular level can be found. This study was carried out on-farm including 232 dairy cows (parity >3) from 64 farms in Switzerland. Blood and liver samples were collected on d 20+/-7 before parturition, on d 24+/-2, and on d 89+/-4 after parturition. Blood plasma was assayed for concentrations of glucose, nonesterified fatty acids, beta-hydroxybutyrate, cholesterol, triglycerides, urea, albumin, protein, insulin, insulin-like growth factor-1, leptin, 3,5,3'-triiodothyronine, and thyroxine. Liver samples were obtained at the same time points and were measured for mRNA abundance of 26 candidate genes encoding enzymes and nuclear receptors involved in gluconeogenesis, fatty acid beta-oxidation, fatty acid and triglyceride synthesis, ketogenesis, citric acid cycle, cholesterol synthesis, and the urea cycle. The cows in the present study experienced a marked metabolic load in early lactation, as presented by changes in plasma metabolites and hormones, and responded accordingly with upregulation and downregulation of almost all candidate genes involved in metabolic processes in the liver. The observed inter-individual variation for the candidate genes, which was highest for acetyl-CoA-carboxylase and glycerol-3-phosphate dehydrogenase 2, should be further investigated to unravel the regulation at molecular level for optimal adaptive performance in dairy cows.
Resumo:
Gene expression of adipose factors, which may be part of the mechanisms that underlie insulin sensitivity, were studied in dairy cows around parturition. Subcutaneous fat biopsies and blood samples were taken from 27 dairy cows in week 8 antepartum (a.p.), on day 1 postpartum (p.p.) and in week 5 p.p. In the adipose tissue samples, mRNA was quantified by real-time reverse transcription polymerase chain reaction for tumour necrosis factor alpha (TNFalpha), insulin-independent glucose transporter (GLUT1), insulin-responsive glucose transporter (GLUT4), insulin receptor, insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), regulatory subunit of phosphatidylinositol-3 kinase (p85) and catalytic subunit of phosphatidylinositol-3 kinase. Blood plasma was assayed for concentrations of glucose, beta-hydroxybutyric acid, non-esterified fatty acids (NEFA) and insulin. Plasma parameters followed a pattern typically observed in dairy cows. Gene expression changes were observed, but there were no changes in TNFalpha concentrations, which may indicate its local involvement in catabolic adaptation of adipose tissue. Changes in GLUT4 and GLUT1 mRNA abundance may reflect their involvement in reduced insulin sensitivity and in sparing glucose for milk synthesis in early lactation. Unchanged gene expression of IRS1, IRS2 and p85 over time may imply a lack of their involvement in terms of insulin sensitivity dynamics. Alternatively, it may indicate that post-transcriptional modifications of these factors came into play and may have concealed an involvement.
Resumo:
Cytosolic CuZn-SOD (SOD1) is a dimeric, carbohydrate-free enzyme with a molecular weight of about 32 kDa and also circulates in human blood plasma. Due to its molecular mass it has been believed that the enzyme cannot penetrate the cell membrane. Here we report that rapid endocytosis of FITC-CuZn-SOD into human endothelial cells occurs within 5 min. Moreover, relaxation of rat aortic rings in response to CuZn-SOD is associated with a lag time of 45-60 s and only observed in the presence of intact endothelial cells. The results indicate acute and rapid endothelial cell endocytosis of CuZn-SOD, possibly via activation of a receptor-mediated pathway. Intracellular uptake via endocytosis may contribute to the vascular effects of CuZn-SOD, including vasodilation, and is likely to play a role in regulation of vascular tone and diseases such as atherosclerosis.
Resumo:
Oxidative stress seems to contribute to cardiopulmonary bypass (CPB)-related postoperative complications. Pediatric patients are particularly prone to these complications. With this in mind, we measured oxidative stress markers in blood plasma of 20 children undergoing elective heart surgery before, during, and up to 48 h after cessation of CPB, along with inflammatory parameters and full analysis of iron status. Ascorbate levels were decreased by approximately 50% (P < 0.001) at the time of aorta cross-clamp removal (or pump switch-off in 4 patients with partial CPB), and associated with corresponding increases in dehydroascorbate (P < 0.001, r = -0.80) and malondialdehyde (P < 0.01, r = -0.59). In contrast to the immediate oxidative response, peak levels of IL-6 and IL-8 were not observed until 3-12 h after CPB cessation. The early loss of ascorbate correlated with duration of CPB (P < 0.002, r = 0.72), plasma hemoglobin after cross-clamp removal (P < 0.001, r = 0.70), and IL-6 and IL-8 levels at 24 and 48 h after CPB (P < 0.01), but not with postoperative lactate levels, strongly suggesting that hemolysis, and not inflammation or ischemia, was the main cause of early oxidative stress. The correlation of ventilation time with early changes in ascorbate (P < 0.02, r = 0.55), plasma hemoglobin (P < 0.01, r = 0.60), and malondialdehyde (P < 0.02, r = 0.54) suggests that hemolysis-induced oxidative stress may be an underlying cause of CPB-associated pulmonary dysfunction. Optimization of surgical procedures or therapeutic intervention that minimize hemolysis (e.g., off-pump surgery) or the resultant oxidative stress (e.g., antioxidant treatment) should be considered as possible strategies to lower the rate of postoperative complications in pediatric CPB.
Resumo:
Experimental bacterial meningitis due to Streptococcus pneumoniae in infant rats was associated with a time-dependent increase in CSF and cortical urate that was approximately 30-fold elevated at 22 h after infection compared to baseline. This increase was mirrored by a 20-fold rise in cortical xanthine oxidoreductase activity. The relative proportion of the oxidant-producing xanthine oxidase to total activity did not increase, however. Blood plasma levels of urate also increased during infection, but part of this was as a consequence of dehydration, as reflected by elevated ascorbate concentrations in the plasma. Administration of the radical scavenger alpha-phenyl-tert-butyl nitrone, previously shown to be neuroprotective in the present model, did not significantly affect either xanthine dehydrogenase or xanthine oxidase activity, and increased even further cortical accumulation of urate. Treatment with the xanthine oxidoreductase inhibitor allopurinol inhibited CSF urate levels earlier than those in blood plasma, supporting the notion that urate was produced within the brain. However, this treatment did not prevent the loss of ascorbate and reduced glutathione in the cortex and CSF. Together with data from the literature, the results strongly suggest that xanthine oxidase is not a major cause of oxidative stress in bacterial meningitis and that urate formation due to induction of xanthine oxidoreductase in the brain may in fact represent a protective response.
Resumo:
Fish behaviourists are increasingly turning to non-invasive measurement of steroid hormones in holding water, as opposed to blood plasma. When some of us met at a workshop in Faro, Portugal, in September, 2007, we realised that there were still many issues concerning the application of this procedure that needed resolution, including: Why do we measure release rates rather than just concentrations of steroids in the water? How does one interpret steroid release rates when dealing with fish of different sizes? What are the merits of measuring conjugated as well as free steroids in water? In the ‘static’ sampling procedure, where fish are placed in a separate container for a short period of time, does this affect steroid release—and, if so, how can it be minimised? After exposing a fish to a behavioural stimulus, when is the optimal time to sample? What is the minimum amount of validation when applying the procedure to a new species? The purpose of this review is to attempt to answer these questions and, in doing so, to emphasize that application of the non-invasive procedure requires more planning and validation than conventional plasma sampling. However, we consider that the rewards justify the extra effort.
Resumo:
The purpose of this study was to investigate variations in hepatic regulation of metabolism during the dry period, after parturition, and in early lactation in dairy cows. For this evaluation, cows were divided into 2 groups based on the plasma concentration of beta-hydroxybutyric acid (BHBA) in wk 4 postpartum (PP; group HB, BHBA >0.75 mmol/L; group LB, BHBA <0.75 mmol/L, respectively). Liver biopsies were obtained from 28 cows at drying off (mean 59 +/- 8 d antepartum), on d 1, and in wk 4 and 14 PP. Blood samples were collected every 2 wk during this entire period. Liver samples were analyzed for mRNA abundance of genes related to carbohydrate metabolism (pyruvate carboxylase, PC; phosphoenolpyruvate carboxykinase, PEPCK; citrate synthase, CS), fatty acid biosynthesis (ATP citrate lyase, ACLY) and oxidation (acyl-CoA synthetase long-chain, ACSL; carnitine palmitoyltransferase 1A, CPT 1A; carnitine palmitoyltransferase 2, CPT 2; acyl-coenzyme A dehydrogenase very long chain, ACADVL), cholesterol biosynthesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 1, HMGCS1), ketogenesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 2, HMGCS2), and of genes encoding the transcription factors peroxisome proliferator-activated receptor alpha (PPARalpha), peroxisome proliferator-activated receptor gamma (PPARgamma), and sterol regulatory element binding factor 1 (SREBF1). Blood plasma was assayed for concentrations of glucose, BHBA, nonesterified fatty acids, cholesterol, triglycerides, insulin, insulin-like growth factor-I, and thyroid hormones. In both groups, plasma parameters followed a pattern usually observed in dairy cows. However, changes were moderate and the energy balance in cows turned positive in wk 7 PP for both groups. Additionally, the energy balance and milk yield were similar for both groups after parturition onwards. Significant group effects were found at drying off, when plasma concentrations of triglycerides were higher in LB than in HB, and in wk 4 PP, when plasma concentrations of glucose and IGF-I were lower in HB than in LB. Similarly, moderate changes in mRNA expression of hepatic genes between the different time points were observed, although HB cows showed more adaptive performance than LB cows based on changes in mRNA expression of PEPCKc, PEPCKm, CS, CPT 1A, CPT 2, and PPARalpha. Part of the variation measured in this study was explained by parity. Significant Spearman rank correlation coefficients between the variables were not similar at each time point and were not similar between the groups at each time point, suggesting that metabolic regulation differs between cows. In conclusion, metabolic regulation in dairy cows is a dynamic system, and differs obviously between cows at different metabolic stages related to parturition.
Resumo:
Pharmaceuticals are ubiquitous in surface waters as a consequence of discharges from municipal wastewater treatment plants. However, few studies have assessed the bioavailability of pharmaceuticals to fish in natural waters. In the present study, passive samplers and rainbow trout were experimentally deployed next to three municipal wastewater treatment plants in Finland to evaluate the degree of animal exposure. Pharmaceuticals from several therapeutic classes (in total 15) were analyzed by liquid chromatography-tandem mass spectrometry in extracts of passive samplers and in bile and blood plasma of rainbow trout held at polluted sites for 10 d. Each approach indicated the highest exposure near wastewater treatment plant A and the lowest near that of plant C. Diclofenac, naproxen, and ibuprofen were found in rainbow trout, and their concentrations in bile were 10 to 400 times higher than in plasma. The phase I metabolite hydroxydiclofenac was also detected in bile. Hence, bile proved to be an excellent sample matrix for the exposure assessment of fish. Most of the monitored pharmaceuticals were found in passive samplers, implying that they may overestimate the actual exposure of fish in receiving waters. Two biomarkers, hepatic vitellogenin and cytochrome P4501A, did not reveal clear effects on fish, although a small induction of vitellogenin mRNA was observed in trout caged near wastewater treatment plants B and C.
Resumo:
The circadian clock orchestrates many aspects of human physiology, and disruption of this clock has been implicated in various pathologies, ranging from cancer to metabolic syndrome and diabetes. Although there is evidence that metabolism and the circadian clockwork are intimately linked on a transcriptional level, whether these effects are directly under clock control or are mediated by the rest-activity cycle and the timing of food intake is unclear. To answer this question, we conducted an unbiased screen in human subjects of the metabolome of blood plasma and saliva at different times of day. To minimize indirect effects, subjects were kept in a 40-h constant routine of enforced posture, constant dim light, hourly isocaloric meals, and sleep deprivation. Under these conditions, we found that ~15% of all identified metabolites in plasma and saliva were under circadian control, most notably fatty acids in plasma and amino acids in saliva. Our data suggest that there is a strong direct effect of the endogenous circadian clock on multiple human metabolic pathways that is independent of sleep or feeding. In addition, they identify multiple potential small-molecule biomarkers of human circadian phase and sleep pressure.
Resumo:
Atenolol is a highly prescribed anti-hypertensive pharmaceutical and a member of the group of β-blockers. It has been detected at concentrations ranging from ng L(-1) to low μg L(-1) in waste and surface waters. The present study aimed to assess the sub-lethal effects of atenolol on rainbow trout (Oncorhynchus mykiss) and to determine its tissue-specific bioconcentration. Juvenile rainbow trout were exposed for 21 and 42 days to three concentration levels of atenolol (1 μg L(-1) - environmentally relevant concentration, 10 μg L(-1), and 1000 μg L(-1)). The fish exposed to 1 μg L(-1) atenolol exhibited a higher lactate content in the blood plasma and a reduced haemoglobin content compared with the control. The results show that exposure to atenolol at concentrations greater than or equal to 10 μg L(-1) significantly reduces both the haematocrit value and the glucose concentration in the blood plasma. The activities of the studied antioxidant enzymes (catalase and superoxide dismutase) were not significantly affected by atenolol exposure, and only the highest tested concentration of atenolol significantly reduced the activity of glutathione reductase. The activities of selected CYP450 enzymes were not affected by atenolol exposure. The histological changes indicate that atenolol has an effect on the vascular system, as evidenced by the observed liver congestion and changes in the pericardium and myocardium. Atenolol was found to have a very low bioconcentration factor (the highest value found was 0.27). The bioconcentration levels followed the order liver>kidney>muscle. The concentration of atenolol in the blood plasma was below the limit of quantification (2.0 ng g(-1)). The bioconcentration factors and the activities of selected CYP450 enzymes suggest that atenolol is not metabolised in the liver and may be excreted unchanged.
Resumo:
Neonatal energy metabolism in calves has to adapt to extrauterine life and depends on colostrum feeding. The adrenergic and glucocorticoid systems are involved in postnatal maturation of pathways related to energy metabolism and calves show elevated plasma concentrations of cortisol and catecholamines during perinatal life. We tested the hypothesis that hepatic glucocorticoid receptors (GR) and α₁- and β₂-adrenergic receptors (AR) in neonatal calves are involved in adaptation of postnatal energy metabolism and that respective binding capacities depend on colostrum feeding. Calves were fed colostrum (CF; n=7) or a milk-based formula (FF; n=7) with similar nutrient content up to d 4 of life. Blood samples were taken daily before feeding and 2h after feeding on d 4 of life to measure metabolites and hormones related to energy metabolism in blood plasma. Liver tissue was obtained 2 h after feeding on d 4 to measure hepatic fat content and binding capacity of AR and GR. Maximal binding capacity and binding affinity were calculated by saturation binding assays using [(3)H]-prazosin and [(3)H]-CGP-12177 for determination of α₁- and β₂-AR and [(3)H]-dexamethasone for determination of GR in liver. Additional liver samples were taken to measure mRNA abundance of AR and GR, and of key enzymes related to hepatic glucose and lipid metabolism. Plasma concentrations of albumin, triacylglycerides, insulin-like growth factor I, leptin, and thyroid hormones changed until d 4 and all these variables except leptin and thyroid hormones responded to feed intake on d 4. Diet effects were determined for albumin, insulin-like growth factor I, leptin, and thyroid hormones. Binding capacity for GR was greater and for α₁-AR tended to be greater in CF than in FF calves. Binding affinities were in the same range for each receptor type. Gene expression of α₁-AR (ADRA1) tended to be lower in CF than FF calves. Binding capacity of GR was related to parameters of glucose and lipid metabolism, whereas β₂-AR binding capacity was negatively associated with glucose metabolism. In conclusion, our results indicate a dependence of GR and α₁-AR on milk feeding immediately after birth and point to an involvement of hepatic GR and AR in postnatal adaptation of glucose and lipid metabolism in calves.
Resumo:
Colostrum formation and lactogenesis in the mammary gland and the timing of parturition are regulated by endocrine signals. Changes in progesterone (P4) and prolactin (PRL) are considered key events that inhibit colostrum formation, trigger parturition, and signal the onset of lactation. The goal of our study was to determine if colostrum yield and composition and immunoglobulin transfer are affected by prepartum milking relative to the decrease in P4, peak of PRL, or occurrence of parturition. Twenty-three multiparous cows were randomly assigned to 1 of 2 groups: (1) control with first milking at 4h postcalving (CON, n=11), and (2) treatment group with first milking approximately 1d before calving and second milking at 4h after parturition (APM, n=12). Colostrum yields were recorded and proportional samples were analyzed for immunoglobulin G (IgG) concentration. Blood plasma samples for the analyses of P4 and PRL were collected 3 times daily at 8-h intervals for 4d prepartum and again taken at 4h after parturition. Total colostrum mass of APM cows was higher than that of CON cows. Immunoglobulin G concentration and protein content did not differ between antepartum milking in APM cows and postpartum milking in CON cows. Colostrum IgG concentration and protein content in APM cows at the postpartum milking were lower compared with the IgG concentration established at the prepartum (APM) and postpartum milkings of CON cows. Immunoglobulin G mass did not differ in first and second colostrum collection in APM cows but was lower compared with that of CON cows. The sum of IgG mass in APM cows (prepartum + postpartum collections) did not differ from that of CON cows. Lactose and fat in milk (concentration and mass) increased from first to second milking in APM cows. Total mass of lactose and fat in APM cows (prepartum + postpartum collections) was greater compared with that of CON cows. The finding that the time of milking relative to parturition, P4 decrease, and PRL peak slightly affected yield and quality of colostrum emphasizes the complex interactions of numerous endocrine and morphological changes occurring during colostrogenesis and lactogenesis in dairy cows. The considerably rapid transfer of immunoglobulins into colostrum of prepartum-milked cows within a few hours leads to the hypothesis that the transfer of IgG can be very fast and-contrary to earlier findings-persist at least until parturition.
Stability of low molecular weight heparin anti-factor Xa activity in citrated whole blood and plasma
Resumo:
PURPOSE: To analyze how far an ischemic component might have been involved in optic neuritis. METHODS: Case report: a 32-year-old man with symptoms characteristic for optic neuritis underwent extensive clinical, laboratory/serological and vascular examination for systemic associations and vascular involvement. RESULTS: The patient was found to have a temporary ocular blood flow dysregulation and increased plasma endothelin-1 levels which decreased after the acute phase of the optic nerve. CONCLUSIONS: We conclude that there might be an ischemic component in this patient with optic neuritis and hypothesize that this ischemic component is at least in part due to a temporarily increased endothelin-1 level.
Resumo:
Many preanalytical variables affect the results of coagulation assays. A possible way to control some of them would be to accept blood specimens shipped in the original collection tube. The aim of our study was to investigate the stability of coagulation assays in citrated whole blood transported at ambient temperature for up to two days after specimen collection. Blood samples from 59 patients who attended our haematology outpatient ward for thrombophilia screening were transported at ambient temperature (outdoor during the day, indoor overnight) for following periods of time: <1 hour, 4-6, 8-12, 24-28 and 48-52 hours prior to centrifugation and plasma-freezing. The following coagulation tests were performed: PT, aPTT, fibrinogen, FII:C, FV:C, FVII:C, FVIII:C, FIX:C, FX:C, FXI:C, VWF:RCo, VWF:Ag, AT, PC activity, total and free PS antigen, modified APC-sensitivity-ratio, thrombin-antithrombin-complex and D-dimer. Clinically significant changes, defined as a percentage change of more than 10% from the initial value, were observed for FV:C, FVIII:C and total PS antigen starting at 24-28 hours, and for PT, aPTT and FVII:C at 48-52 hours. No statistically significant differences were seen for fibrinogen, antithrombin, or thrombin-antithrombin complexes (Friedman repeated measures analysis of variance). The present data suggest that the use of whole blood samples transported at ambient temperature may be an acceptable means of delivering specimens for coagulation analysis. With the exception of factor V and VIII coagulant activity, and total PS antigen all investigated parameters can be measured 24-28 hours after specimen collection without observing clinically relevant changes.