80 resultados para BH records


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measured δ17O and δ18O in two Antarctic ice cores at EPICA Dome C (EDC) and TALDICE (TD), respectively, and computed 17O-excess with respect to VSMOW. The comparison of our 17O-excess data with the previous record obtained at Vostok (Landais et al., 2008a) revealed differences up to 35 ppm in 17O-excess mean level and evolution for the three sites. Our data show that the large increase depicted at Vostok (20 ppm) during the last deglaciation is a regional and not a general pattern in the temporal distribution of 17O-excess in East Antarctica. The EDC data display an increase of 12 ppm, whereas the TD data show no significant variation from the Last Glacial Maximum (LGM) to the Early Holocene (EH). A Lagrangian moisture source diagnostic revealed very different source regions for Vostok and EDC compared to TD. These findings combined with the results of a sensitivity analysis, using a Rayleigh-type isotopic model, suggest that normalized relative humidity (RHn) at the oceanic source region (OSR) is a determining factor for the spatial differences of 17O-excess in East Antarctica. However, 17O-excess in remote sites of continental Antarctica (e.g. Vostok) may be highly sensitive to local effects. Hence, we consider 17O-excess in coastal East Antarctic ice cores (TD) to be more reliable as a proxy for RHn at the OSR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Carrington Event of 1859 is considered to be among the largest space weather events of the last 150 years. We show that only one out of 14 well-resolved ice core records from Greenland and Antarctica has a nitrate spike dated to 1859. No sharp spikes are observed in the Antarctic cores studied here. In Greenland numerous spikes are observed in the 40 years surrounding 1859, but where other chemistry was measured, all large spikes have the unequivocal signal, including co-located spikes in ammonium, formate, black carbon and vanillic acid, of biomass burning plumes. It seems certain that most spikes in an earlier core, including that claimed for 1859, are also due to biomass burning plumes, and not to solar energetic particle (SEP) events. We conclude that an event as large as the Carrington Event did not leave an observable, widespread imprint in nitrate in polar ice. Nitrate spikes cannot be used to derive the statistics of SEPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] The Bern3D model was applied to quantify the mechanisms of carbon cycle changes during the Holocene (last 11,000 years). We rely on scenarios from the literature to prescribe the evolution of shallow water carbonate deposition and of land carbon inventory changes over the glacial termination (18,000 to 11,000 years ago) and the Holocene and modify these scenarios within uncertainties. Model results are consistent with Holocene records of atmospheric CO2 and δ13C as well as the spatiotemporal evolution of δ13C and carbonate ion concentration in the deep sea. Deposition of shallow water carbonate, carbonate compensation of land uptake during the glacial termination, land carbon uptake and release during the Holocene, and the response of the ocean-sediment system to marine changes during the termination contribute roughly equally to the reconstructed late Holocene pCO2 rise of 20 ppmv. The 5 ppmv early Holocene pCO2 decrease reflects terrestrial uptake largely compensated by carbonate deposition and ocean sediment responses. Additional small contributions arise from Holocene changes in sea surface temperature, ocean circulation, and export productivity. The Holocene pCO2 variations result from the subtle balance of forcings and processes acting on different timescales and partly in opposite direction as well as from memory effects associated with changes occurring during the termination. Different interglacial periods with different forcing histories are thus expected to yield different pCO2 evolutions as documented by ice cores.