61 resultados para BCL-XL
Resumo:
Bcl-2 oncogene expression plays a role in the establishment of persistent viral infection by blocking virus-induced apoptosis. This might be achieved by preventing virus-induced activation of caspase-3, an IL-1beta-converting enzyme (ICE)-like cysteine protease that has been implicated in the death effector phase of apoptosis. Contrary to this model, we show that three cell types highly overexpressing functional Bcl-2 displayed caspase-3 activation and underwent apoptosis in response to infection with alphaviruses Semliki Forest and Sindbis as efficiently as vector control counterparts. In all three cell types, overexpressed 26 kDa Bcl-2 was cleaved into a 23 kDa protein. Antibody epitope mapping revealed that cleavage occurred at one or two target sites for caspases within the amino acid region YEWD31 (downward arrow) AGD34 (downward arrow) A, removing the N-terminal BH4 region known to be essential for the death-protective activity of Bcl-2. Preincubation of cells with the caspase inhibitor Z-VAD prevented Bcl-2 cleavage and partially restored the protective activity of Bcl-2 against virus-induced apoptosis. Moreover, a murine Bcl-2 mutant having Asp31, Asp34 and Asp36 substituted by Glu was resistant to proteolytic cleavage and abrogated apoptosis following virus infection. These findings indicate that alphaviruses can trigger a caspase-mediated inactivation of Bcl-2 in order to evade the death protection imposed by this survival factor.
Resumo:
PURPOSE To assess whether Bcl-2, an inhibitor of the apoptotic cascade, can predict response to neoadjuvant chemotherapy in patients with urothelial cancer of the bladder (UCB). METHODS Bcl-2 expression was analyzed in 2 different tissue microarrays (TMAs). One TMA was constructed of primary tumors and their corresponding lymph node (LN) metastases from 152 patients with chemotherapy-naive UCB treated by cystectomy and pelvic lymphadenectomy (chemotherapy-naive TMA cohort). The other TMA was constructed of tumor samples obtained from 55 patients with UCB before neoadjuvant chemotherapy (transurethral resection of the bladder cancer) and after cystectomy with pelvic lymphadenectomy (residual primary tumor [ypT+], n = 38); residual LN metastases [ypN+], n = 24) (prechemotherapy/postchemotherapy TMA cohort). Bcl-2 overexpression was defined as 10% or more cancer cells showing cytoplasmic immunoreactivity. RESULTS In both TMA cohorts, Bcl-2 overexpression was significantly (P<0.05) more frequent in LN metastases than in primary tumors (chemotherapy-naive TMA group: 18/148 [12%] in primary tumors vs. 39/143 [27%] in metastases; postchemotherapy TMA: ypT+7/35 [20%] vs. ypN+11/19 [58%]). In the neoadjuvant setting, patients with Bcl-2 overexpression in transurethral resection of the bladder cancer specimens showed significantly (P = 0.04) higher ypT stages and less regression in their cystectomy specimens than did the control group, and only one-eighth (13%) had complete tumor regression (ypT0 ypN0). In survival analyses, only histopathological parameters added significant prognostic information. CONCLUSIONS Bcl-2 overexpression in chemotherapy-naive primary bladder cancer is related to poor chemotherapy response and might help to select likely nonresponders.
Resumo:
Endothelial progenitor cells (EPC) play a fundamental role in tissue regeneration and vascular repair. Current research suggests that EPC are more resistant to oxidative stress as compared to differentiated endothelial cells. Here we hypothesized that EPC not only possess the ability to protect themselves against oxidative stress but also confer this protection upon differentiated endothelial cells by release of paracrine factors. To test this hypothesis, HUVEC incubated with conditioned medium obtained from early EPC cultures (EPC-CM) were exposed to H2O2 to assess the accumulation of intracellular ROS, extent of apoptosis and endothelial cell functionality. Under oxidative stress conditions HUVEC treated with EPC-CM exhibited substantially lower levels of intracellular oxidative stress (0.2+/-0.02 vs. 0.4+/-0.03 relative fluorescence units, p<0.05) compared to control medium. Moreover, the incubation with EPC-CM elevated the expression level of antioxidant enzymes in HUVEC (catalase: 2.6+/-0.4; copper/zinc superoxide dismutase (Cu/ZnSOD): 1.6+/-0.1; manganese superoxide dismutase (MnSOD): 1.4+/-0.1-fold increase compared to control, all p<0.05). Furthermore, EPC-CM had the distinct potential to reverse the functional impairment of HUVEC as measured by their capability to form tubular structures in vitro. Finally, incubation of HUVEC with EPC-CM resulted in a significant reduction of apoptosis (0.34+/-0.01 vs. 1.52+/-0.12 relative fluorescence units, p<0.01) accompanied by an increased expression ratio of the anti/pro-apoptotic factors Bcl-2/Bax to 2.9+/-0.7-fold (compared to control, p<0.05). Most importantly, neutralization of selected cytokines such as VEGF, HGF, IL-8 and MMP-9 did not significantly reverse the cyto-protective effect of EPC-CM (p>0.05), suggesting that soluble factors secreted by EPC, possibly via broad synergistic actions, exert strong cyto-protective properties on differentiated endothelium through modulation of intracellular antioxidant defensive mechanisms and pro-survival signals.
Resumo:
The diagnostic performance of isolated high-grade prostatic intraepithelial neoplasia in prostatic biopsies has recently been questioned, and molecular analysis of high-grade prostatic intraepithelial neoplasia has been proposed for improved prediction of prostate cancer. Here, we retrospectively studied the value of isolated high-grade prostatic intraepithelial neoplasia and the immunohistochemical markers ?-methylacyl coenzyme A racemase, Bcl-2, annexin II, and Ki-67 for better risk stratification of high-grade prostatic intraepithelial neoplasia in our local Swiss population. From an initial 165 diagnoses of isolated high-grade prostatic intraepithelial neoplasia, we refuted 61 (37%) after consensus expert review. We used 30 reviewed high-grade prostatic intraepithelial neoplasia cases with simultaneous biopsy prostate cancer as positive controls. Rebiopsies were performed in 66 patients with isolated high-grade prostatic intraepithelial neoplasia, and the median time interval between initial and repeat biopsy was 3 months. Twenty (30%) of the rebiopsies were positive for prostate cancer, and 10 (15%) showed persistent isolated high-grade prostatic intraepithelial neoplasia. Another 2 (3%) of the 66 patients were diagnosed with prostate cancer in a second rebiopsy. Mean prostate-specific antigen serum levels did not significantly differ between the 22 patients with prostate cancer and the 44 without prostate cancer in rebiopsies, and the 30 positive control patients, respectively (median values, 8.1, 7.7, and 8.8 ng/mL). None of the immunohistochemical markers, including ?-methylacyl coenzyme A racemase, Bcl-2, annexin II, and Ki-67, revealed a statistically significant association with the risk of prostate cancer in repeat biopsies. Taken together, the 33% risk of being diagnosed with prostate cancer after a diagnosis of high-grade prostatic intraepithelial neoplasia justifies rebiopsy, at least in our not systematically prostate-specific antigen-screened population. There is not enough evidence that immunohistochemical markers can reproducibly stratify the risk of prostate cancer after a diagnosis of isolated high-grade prostatic intraepithelial neoplasia.
Resumo:
Fas (also called CD95 or APO-1), a member of a subgroup of the tumour necrosis factor receptor superfamily that contain an intracellular death domain, can initiate apoptosis signalling and has a critical role in the regulation of the immune system. Fas-induced apoptosis requires recruitment and activation of the initiator caspase, caspase-8 (in humans also caspase-10), within the death-inducing signalling complex. In so-called type 1 cells, proteolytic activation of effector caspases (-3 and -7) by caspase-8 suffices for efficient apoptosis induction. In so-called type 2 cells, however, killing requires amplification of the caspase cascade. This can be achieved through caspase-8-mediated proteolytic activation of the pro-apoptotic Bcl-2 homology domain (BH)3-only protein BH3-interacting domain death agonist (Bid), which then causes mitochondrial outer membrane permeabilisation. This in turn leads to mitochondrial release of apoptogenic proteins, such as cytochrome c and, pertinent for Fas death receptor (DR)-induced apoptosis, Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP binding protein with low Pi), an antagonist of X-linked inhibitor of apoptosis (XIAP), which imposes a brake on effector caspases. In this review, written in honour of Juerg Tschopp who contributed so much to research on cell death and immunology, we discuss the functions of Bid and XIAP in the control of Fas DR-induced apoptosis signalling, and we speculate on how this knowledge could be exploited to develop novel regimes for treatment of cancer.
Resumo:
Spindle cell oncocytoma (SCO) is a rare, non-adenomatous tumor originating from the anterior pituitary gland. Composed of fusiform, mitochondrion-rich cells sharing several immunophenotypic and ultrastructural properties with folliculo-stellate cells (FSC), SCO has been proposed to represent a neoplastic counterpart of the latter. To date, however, SCO has failed to meet one criterion commonly used in histological-based taxonomy and diagnostics; that of recapitulating any of FSCs' morphologically defined developmental or physiological states. We describe a unique example of SCO wherein a conventional fascicular texture was seen coexisting with and organically merging into follicle-like arrangements. The sellar tumor of 2.7 × 2.6 × 2.5 cm was transphenoidally resected from a 55-year old female. Preoperative magnetic resonance imaging indicated an isointense, contrast enhancing mass with suprasellar extension. Histology showed multiple rudimentary to well-formed, follicle-like cavities on a classical spindle cell background; while all the participating cells exhibited an SCO immunophenotype, including positivity for S100 protein, vimentin, EMA, Bcl-2, and TTF-1, as well as staining with the antimitochondrial antibody 113-1. Conversely no expression of GFAP, follicular-epithelial cytokeratin, carcinoembryonic antigen, or anterior pituitary hormones was detected. Ultrastructurally, tumor cells facing follicular lumina displayed organelles of epithelial specialization, in particular surface microvilli and apical tight junctions. This constellation is felt to be reminiscent of FSCs' metaplastic transition to follicular epithelium, as observed during embryonic development and physiological renewal of the hormone-secreting parenchyma. Such finding is apt to being read as a supporting argument for SCO's descent from the FSC lineage.
Resumo:
Analyses of neutrophil death mechanisms have revealed many similarities with other cell types; however, a few important molecular features make these cells unique executors of cell death mechanisms. For instance, in order to fight invading pathogens, neutrophils possess a potent machinery to produce reactive oxygen species (ROS), the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Evidence is emerging that these ROS are crucial in the execution of most neutrophil cell death mechanisms. Likewise, neutrophils exhibit many diverse granules that are packed with cytotoxic mediators. Of those, cathepsins were recently shown to activate pro-apoptotic B-cell lymphoma-2 (Bcl-2) family members and caspases, thus acting on apoptosis regulators. Moreover, neutrophils have few mitochondria, which hardly participate in ATP synthesis, as neutrophils gain energy from glycolysis. In spite of relatively low levels of cytochrome c in these cells, the mitochondrial death pathway is functional. In addition to these pecularities defining neutrophil death pathways, neutrophils are terminally differentiated cells, hence they do not divide but undergo apoptosis shortly after maturation. The initial trigger of this spontaneous apoptosis remains to be determined, but may result from low transcription and translation activities in mature neutrophils. Due to the unique biological characteristics of neutrophils, pharmacological intervention of inflammation has revealed unexpected and sometimes disappointing results when neutrophils were among the prime target cells during therapy. In this study, we review the current and emerging models of neutrophil cell death mechanisms with a focus on neutrophil peculiarities.
Resumo:
Glutathione-S-transferase of the Pi class (GSTP1) is frequently overexpressed in a variety of solid tumors and has been identified as a potential therapeutic target for cancer therapy. GSTP1 is a phase II detoxification enzyme and conjugates the tripeptide glutathione to endogenous metabolites and xenobiotics, thereby limiting the efficacy of antitumor chemotherapeutic treatments. In addition, GSTP1 regulates cellular stress responses and apoptosis by sequestering and inactivating c-Jun N-terminal kinase (JNK). Thiazolides are a novel class of antibiotics for the treatment of intestinal pathogens with no apparent side effects on the host cells and tissue. Here we show that thiazolides induce a GSTP1-dependent and glutathione-enhanced cell death in colorectal tumor cell lines. Downregulation of GSTP1 reduced the apoptotic activity of thiazolides, whereas overexpression enhanced it. Thiazolide treatment caused strong Jun kinase activation and Jun kinase-dependent apoptosis. As a critical downstream target of Jun kinase we identified the pro-apoptotic Bcl-2 homolog Bim. Thiazolides induced Bim expression and activation in a JNK-dependent manner. Downregulation of Bim in turn significantly blocked thiazolide-induced apoptosis. Whereas low concentrations of thiazolides failed to induce apoptosis directly, they potently sensitized colon cancer cells to TNF-related apoptosis-inducing ligand- and chemotherapeutic drug-induced cell death. Although GSTP1 overexpression generally limits chemotherapy and thus antitumor treatment, our study identifies GSTP1 as Achilles' heel and thiazolides as novel interesting apoptosis sensitizer for the treatment of colorectal tumors.
Resumo:
Scutellaria baicalensis (SB) and SB-derived polyphenols possess anti-proliferative activities in several cancers, including pancreatic cancer (PaCa). However, the precise molecular mechanisms have not been fully defined. SB extract and SB-derived polyphenols (wogonin, baicalin, and baicalein) were used to determine their anti-proliferative mechanisms. Baicalein significantly inhibited the proliferation of PaCa cell lines in a dose-dependent manner, whereas wogonin and baicalin exhibited a much less robust effect. Treatment with baicalein induced apoptosis with release of cytochrome c from mitochondria, and activation of caspase-3 and -7 and PARP. The general caspase inhibitor zVAD-fmk reversed baicalein-induced apoptosis, indicating a caspase-dependent mechanism. Baicalein decreased expression of Mcl-1, an anti-apoptotic member of the Bcl-2 protein family, presumably through a transcriptional mechanism. Genetic knockdown of Mcl-1 resulted in marked induction of apoptosis. The effect of baicalein on apoptosis was significantly attenuated by Mcl-1 over-expression, suggesting a critical role of Mcl-1 in this process. Our results provide evidence that baicalein induces apoptosis in pancreatic cancer cells through down-regulation of the anti-apoptotic Mcl-1 protein.
Resumo:
Alternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate for the prediction of alternans. Using a mathematical ventricular cell model known to exhibit unstable dynamics of both membrane potential and Ca2+ cycling, we demonstrate that an accurate marker can be obtained by pacing at cycle lengths (CLs) varying randomly around a basic CL (BCL) and by evaluating the transfer function between the time series of CLs and APDs using an autoregressive-moving-average (ARMA) model. The first pole of this transfer function corresponds to the eigenvalue (λalt) of the dominant eigenmode of the cardiac system, which predicts that alternans occurs when λalt≤−1. For different BCLs, control values of λalt were obtained using eigenmode analysis and compared to the first pole of the transfer function estimated using ARMA model fitting in simulations of random pacing protocols. In all versions of the cell model, this pole provided an accurate estimation of λalt. Furthermore, during slow ramp decreases of BCL or simulated drug application, this approach predicted the onset of alternans by extrapolating the time course of the estimated λalt. In conclusion, stochastic pacing and ARMA model identification represents a novel approach to predict alternans without making any assumptions about its ionic mechanisms. It should therefore be applicable experimentally for any type of myocardial cell.
Resumo:
Lymphocyte homeostasis is regulated by mechanisms that control lymphocyte proliferation and apoptosis. Activation-induced cell death is mediated by the expression of death ligands and receptors, which, when triggered, activate an apoptotic cascade. Bovine T cells transformed by the intracellular parasite Theileria parva proliferate in an uncontrolled manner and undergo clonal expansion. They constitutively express the death receptor Fas and its ligand, FasL but do not undergo apoptosis. Upon elimination of the parasite from the host cell by treatment with a theilericidal drug, cells become increasingly sensitive to Fas/FasL-induced apoptosis. In normal T cells, the sensitivity to death receptor killing is regulated by specific inhibitor proteins. We found that anti-apoptotic proteins such as cellular (c)-FLIP, which functions as a catalytically inactive form of caspase-8, and X-chromosome-linked inhibitor of apoptosis protein (IAP) as well as c-IAP, which can block downstream executioner caspases, are constitutively expressed in T. parva-transformed T cells. Expression of these proteins is rapidly down-regulated upon parasite elimination. Antiapoptotic proteins of the Bcl-2 family such as Bcl-2 and Bcl-x(L) are also expressed but, in contrast to c-FLIP, c-IAP, and X-chromosome-linked IAP, do not appear to be tightly regulated by the presence of the parasite. Finally, we show that, in contrast to the situation in tumor cells, the phosphoinositide 3-kinase/Akt pathway is not essential for c-FLIP expression. Our findings indicate that by inducing the expression of antiapoptotic proteins, T. parva allows the host cell to escape destruction by homeostatic mechanisms that would normally be activated to limit the continuous expansion of a T cell population.
Resumo:
The armadillo family protein plakoglobin (Pg) is a well-characterized component of anchoring junctions, where it functions to mediate cell-cell adhesion and maintain epithelial tissue integrity. Although its closest homolog beta-catenin acts in the Wnt signaling pathway to dictate cell fate and promote proliferation and survival, the role of Pg in these processes is not well understood. Here, we investigate how Pg affects the survival of mouse keratinocytes by challenging both Pg-null cells and their heterozygote counterparts with apoptotic stimuli. Our results indicate that Pg deletion protects keratinocytes from apoptosis, with null cells exhibiting delayed mitochondrial cytochrome c release and activation of caspase-3. Pg-null keratinocytes also exhibit increased messenger RNA and protein levels of the anti-apoptotic molecule Bcl-X(L) compared to heterozygote controls. Importantly, reintroduction of Pg into the null cells shifts their phenotype towards that of the Pg+/- keratinocytes, providing further evidence that Pg plays a direct role in regulating cell survival. Taken together, our results suggest that in addition to its adhesive role in epithelia, Pg may also function in contrast to the pro-survival tendencies of beta-catenin, to potentiate death in cells damaged by apoptotic stimuli, perhaps limiting the potential for the propagation of mutations and cellular transformation.Journal of Investigative Dermatology advance online publication, 16 November 2006; doi:10.1038/sj.jid.5700615.
Resumo:
We describe a hitherto undocumented variant of dimorphic pituitary neoplasm composed of an admixture of neurosecretory cells and profuse leiomyomatous stroma around intratumoral vessels. Radiologically perceived as a macroadenoma of 3.8 cm in diameter, this pituitary mass developed in an otherwise healthy 43-year-old female. At the term of a yearlong history of amenorrhea and progressive bitemporal visual loss, subtotal resection was performed via transsphenoidal microsurgery. Discounting mild hyperprolactinemia, there was no evidence of excess hormone production. Histologically, solid sheets, nests and cords of epithelial-looking, yet cytokeratin-negative cells were seen growing in a richly vascularized stroma of spindle cells. While strong immunoreactivity for NCAM, Synaptophysin and Chromogranin-A was detected in the former, the latter showed both morphological and immunophenotypic hallmarks of smooth muscle, being positive for vimentin, muscle actin and smooth muscle actin. Architectural patterns varied from monomorphous stroma-dominant zones through biphasic neuroendocrine-leiomyomatous areas, to pseudopapillary fronds along vascular cores. Only endothelia were labeled with CD34. Staining for S100 protein and GFAP, characteristics of sustentacular cells, as well as bcl-2 and c-kit was absent. Except for alpha-subunit, anterior pituitary hormones tested negative in tumor cells, as did a panel of peripheral endocrine markers, including serotonin, somatostatin, calcitonin, parathormone and vasoactive intestinal polypeptide. Mitotic activity was absent and the MIB-1 labeling index low (1-2%). While assignment of this lesion to any established neoplastic entity is not forthcoming, we propose it is being considered as a low-grade neuroendocrine tumor possibly related to null cell adenoma.