49 resultados para BAND-SHAPE-ANALYSIS
Resumo:
George Gaylord Simpson famously postulated that much of life's diversity originated as adaptive radiations-more or less simultaneous divergences of numerous lines from a single ancestral adaptive type. However, identifying adaptive radiations has proven difficult due to a lack of broad-scale comparative datasets. Here, we use phylogenetic comparative data on body size and shape in a diversity of animal clades to test a key model of adaptive radiation, in which initially rapid morphological evolution is followed by relative stasis. We compared the fit of this model to both single selective peak and random walk models. We found little support for the early-burst model of adaptive radiation, whereas both other models, particularly that of selective peaks, were commonly supported. In addition, we found that the net rate of morphological evolution varied inversely with clade age. The youngest clades appear to evolve most rapidly because long-term change typically does not attain the amount of divergence predicted from rates measured over short time scales. Across our entire analysis, the dominant pattern was one of constraints shaping evolution continually through time rather than rapid evolution followed by stasis. We suggest that the classical model of adaptive radiation, where morphological evolution is initially rapid and slows through time, may be rare in comparative data.
Resumo:
In many animals, sexual selection on male traits results from female mate choice decisions made during a sequence of courtship behaviors. We use a bower-building cichlid fish, Nyassachromis cf. microcephalus, to show how applying standard selection analysis to data on sequential female assessment provides new insights into sexual selection by mate choice. We first show that the cumulative selection differentials confirm previous results suggesting female choice favors males holding large volcano-shaped sand bowers. The sequential assessment analysis reveals these cumulative differentials are the result of selection acting on different bower dimensions during the courtship sequence; females choose to follow males courting from tall bowers, but choose to engage in premating circling with males holding bowers with large diameter platforms. The approach we present extends standard selection analysis by partitioning the variances of increasingly accurate estimates of male reproductive fitness and is applicable to systems in which sequential female assessment drives sexual selection on male traits.
Resumo:
When it comes to helping to shape sustainable development, research is most useful when it bridges the science–implementation/management gap and when it brings development specialists and researchers into a dialogue (Hurni et al. 2004); can a peer-reviewed journal contribute to this aim? In the classical system for validation and dissemination of scientific knowledge, journals focus on knowledge exchange within the academic community and do not specifically address a ‘life-world audience’. Within a North-South context, another knowledge divide is added: the peer review process excludes a large proportion of scientists from the South from participating in the production of scientific knowledge (Karlsson et al. 2007). Mountain Research and Development (MRD) is a journal whose mission is based on an editorial strategy to build the bridge between research and development and ensure that authors from the global South have access to knowledge production, ultimately with a view to supporting sustainable development in mountains. In doing so, MRD faces a number of challenges that we would like to discuss with the td-net community, after having presented our experience and strategy as editors of this journal. MRD was launched in 1981 by mountain researchers who wanted mountains to be included in the 1992 Rio process. In the late 1990s, MRD realized that the journal needed to go beyond addressing only the scientific community. It therefore launched a new section addressing a broader audience in 2000, with the aim of disseminating insights into, and recommendations for, the implementation of sustainable development in mountains. In 2006, we conducted a survey among MRD’s authors, reviewers, and readers (Wymann et al. 2007): respondents confirmed that MRD had succeeded in bridging the gap between research and development. But we realized that MRD could become an even more efficient tool for sustainability if development knowledge were validated: in 2009, we began submitting ‘development’ papers (‘transformation knowledge’) to external peer review of a kind different from the scientific-only peer review (for ‘systems knowledge’). At the same time, the journal became open access in order to increase the permeability between science and society, and ensure greater access for readers and authors in the South. We are currently rethinking our review process for development papers, with a view to creating more space for communication between science and society, and enhancing the co-production of knowledge (Roux 2008). Hopefully, these efforts will also contribute to the urgent debate on the ‘publication culture’ needed in transdisciplinary research (Kueffer et al. 2007).
Resumo:
We report the analysis of the SI So rotational band contours of jet-cooled 5-methyl-2-hydroxypyrimidine (5M2HP), the enol form of deoxythymine. Unlike thymine, which exhibits a structureless spectrum, the vibronic spectrum of 5M2HP is well structured, allowing us to determine the rotational constants and the methyl group torsional barriers in the S-0 and S-1 states. The 0(0)(0), 6a(0)(1), 6b(0)(1), and 14(0)(1) band contours were measured at 900 MHz (0.03 cm(-1)) resolution using mass-specific two-color resonant two-photon ionization (2C-R2PI) spectroscopy. All four bands are polarized perpendicular to the pyrimidine plane (>90% c type), identifying the S-1 <- S-0 excitation of 5M2HP as a 1n pi* transition. All contours exhibit two methyl rotor subbands that arise from the lowest 5-methyl torsional states 0A '' and 1E ''. The S-0 and S-1 state torsional barriers were extracted from fits to the torsional subbands. The 3-fold barriers are V-3 '' = 13 cm(-1) and V3' = SI cm(-1); the 6-fold barrier contributions V-6 '' and V-6' are in the range of 2-3 cm(-1) and are positive in both states. The changes of A, B, and C rotational constants upon S-1 <- S-0 excitation were extracted from the contours and reflect an "anti-quinoidal" distortion. The 0(0)(0) contour can only be simulated if a 3 GHz Lorentzian line shape is included, which implies that the S-1(1n pi*) lifetime is similar to 55 ps. For the 6a(0)(1) and 6b(0)(1) bands, the Lorentzian component increases to 5.5 GHz, reflecting a lifetime decrease to similar to 30 ps. The short lifetimes are consistent with the absence of fluorescence from the 1n pi* state. Combining these measurements with the previous observation of efficient intersystem crossing (ISC) from the Si state to a long-lived T-1((3)n pi*) state that lies similar to 2200 cm(-1) below [S. Lobsiger, S. et al. Phys. Chem. Chem. Phys. 2010, 12, 5032] implies that the broadening arises from fast intersystem crossing with k(ISC) approximate to 2 x 10(10) s(-1). In comparison to 5-methylpyrimidine, the ISC rate is enhanced by at least 10 000 by the additional hydroxy group in position 2.
Resumo:
Current methods to characterize mesenchymal stem cells (MSCs) are limited to CD marker expression, plastic adherence and their ability to differentiate into adipogenic, osteogenic and chondrogenic precursors. It seems evident that stem cells undergoing differentiation should differ in many aspects, such as morphology and possibly also behaviour; however, such a correlation has not yet been exploited for fate prediction of MSCs. Primary human MSCs from bone marrow were expanded and pelleted to form high-density cultures and were then randomly divided into four groups to differentiate into adipogenic, osteogenic chondrogenic and myogenic progenitor cells. The cells were expanded as heterogeneous and tracked with time-lapse microscopy to record cell shape, using phase-contrast microscopy. The cells were segmented using a custom-made image-processing pipeline. Seven morphological features were extracted for each of the segmented cells. Statistical analysis was performed on the seven-dimensional feature vectors, using a tree-like classification method. Differentiation of cells was monitored with key marker genes and histology. Cells in differentiation media were expressing the key genes for each of the three pathways after 21 days, i.e. adipogenic, osteogenic and chondrogenic, which was also confirmed by histological staining. Time-lapse microscopy data were obtained and contained new evidence that two cell shape features, eccentricity and filopodia (= 'fingers') are highly informative to classify myogenic differentiation from all others. However, no robust classifiers could be identified for the other cell differentiation paths. The results suggest that non-invasive automated time-lapse microscopy could potentially be used to predict the stem cell fate of hMSCs for clinical application, based on morphology for earlier time-points. The classification is challenged by cell density, proliferation and possible unknown donor-specific factors, which affect the performance of morphology-based approaches. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
High altitude periodic breathing (PB) shares some common pathophysiologic aspects with sleep apnea, Cheyne-Stokes respiration and PB in heart failure patients. Methods that allow quantifying instabilities of respiratory control provide valuable insights in physiologic mechanisms and help to identify therapeutic targets. Under the hypothesis that high altitude PB appears even during physical activity and can be identified in comparison to visual analysis in conditions of low SNR, this study aims to identify PB by characterizing the respiratory pattern through the respiratory volume signal. A number of spectral parameters are extracted from the power spectral density (PSD) of the volume signal, derived from respiratory inductive plethysmography and evaluated through a linear discriminant analysis. A dataset of 34 healthy mountaineers ascending to Mt. Muztagh Ata, China (7,546 m) visually labeled as PB and non periodic breathing (nPB) is analyzed. All climbing periods within all the ascents are considered (total climbing periods: 371 nPB and 40 PB). The best crossvalidated result classifying PB and nPB is obtained with Pm (power of the modulation frequency band) and R (ratio between modulation and respiration power) with an accuracy of 80.3% and area under the receiver operating characteristic curve of 84.5%. Comparing the subjects from 1(st) and 2(nd) ascents (at the same altitudes but the latter more acclimatized) the effect of acclimatization is evaluated. SaO(2) and periodic breathing cycles significantly increased with acclimatization (p-value < 0.05). Higher Pm and higher respiratory frequencies are observed at lower SaO(2), through a significant negative correlation (p-value < 0.01). Higher Pm is observed at climbing periods visually labeled as PB with > 5 periodic breathing cycles through a significant positive correlation (p-value < 0.01). Our data demonstrate that quantification of the respiratory volume signal using spectral analysis is suitable to identify effects of hypobaric hypoxia on control of breathing.
Resumo:
We present a framework for statistical finite element analysis combining shape and material properties, and allowing performing statistical statements of biomechanical performance across a given population. In this paper, we focus on the design of orthopaedic implants that fit a maximum percentage of the target population, both in terms of geometry and biomechanical stability. CT scans of the bone under consideration are registered non-rigidly to obtain correspondences in position and intensity between them. A statistical model of shape and intensity (bone density) is computed by means of principal component analysis. Afterwards, finite element analysis (FEA) is performed to analyse the biomechanical performance of the bones. Realistic forces are applied on the bones and the resulting displacement and bone stress distribution are calculated. The mechanical behaviour of different PCA bone instances is compared.
Resumo:
A study was designed to investigate the effect of medetomidine sedation on quantitative electroencephalography (q-EEG) in healthy young and adult cats to determine objective guidelines for diagnostic EEG recordings and interpretation. Preliminary visual examination of EEG recordings revealed high-voltage low-frequency background activity. Spindles, k-complexes and vertex sharp transients characteristic of sleep or sedation were superimposed on a low background activity. Neither paroxysmal activity nor EEG burst-suppression were observed. The spectral analysis of q-EEG included four parameters, namely, relative power (%), and mean, median and peak frequency (Hz) of all four frequency bands (delta, theta, alpha and beta). The findings showed a prevalence of slow delta and theta rhythms as opposed to fast alpha and beta rhythms in both young (group A) and adult (group B) cats. A posterior gradient was reported for the theta band and an anterior gradient for the alpha and beta bands in both groups, respectively. The relative power value in group B compared to group A was significantly higher for theta, alpha and beta bands, and lower for the delta band. The mean and median frequency values in group B was significantly higher for delta, theta and beta bands and lower for the alpha band. The study has shown that a medetomidine sedation protocol for feline EEG may offer a method for investigating bio-electrical cortical activity. The use of q-EEG analysis showed a decrease in high frequency bands and increased activity of the low frequency band in healthy cats under medetomidine sedation.
Resumo:
Patients with diabetes mellitus (DM) often have alterations of the autonomic nervous system (ANS), even early in their disease course. Previous research has not evaluated whether these changes may have consequences on adaptation mechanisms in DM, e.g. to mental stress. We therefore evaluated whether patients with DM who already had early alterations of the ANS reacted with an abnormal regulatory pattern to mental stress. We used the spectral analysis technique, known to be valuable and reliable in the investigation of disturbances of the ANS. We investigated 34 patients with DM without clinical evidence of ANS dysfunction (e.g. orthostatic hypotension) and 44 normal control subjects (NC group). No patients on medication known to alter ANS responses were accepted. The investigation consisted of a resting state evaluation and a mental stress task (BonnDet). In basal values, only the 21 patients with type 2 DM were different in respect to body mass index and systolic blood pressure. In the study parameters we found significantly lower values in resting and mental stress spectral power of mid-frequency band (known to represent predominantly sympathetic influences) and of high-frequency and respiration bands (known to represent parasympathetic influences) in patients with DM (types 1 and 2) compared with NC group (5.3 +/- 1.2 ms2 vs. 6.1 +/- 1.3 ms2, and 5.5 +/- 1.6 ms2 vs. 6.2 +/- 1.5 ms2, and 4.6 +/- 1.7 ms2 vs. 6.2 +/- 1.5 ms2, for resting values respectively; 4.7 +/- 1.4 ms2 vs. 5.9 +/- 1.2 ms2, and 4.6 +/- 1.9 ms2 vs. 5.6 +/- 1.7 ms2, and 3.7 +/- 2.1 ms2 vs. 5.6 +/- 1.7 ms2, for stress values respectively; M/F ratio 6/26 vs. 30/14). These differences remained significant even when controlled for age, sex, and body weight. However, patients with DM type 2 (and significantly higher body weight) showed only significant values in mental stress modulus values. There were no specific group effects in the patients with DM in adaptation mechanisms to mental stress compared with the NC group. These findings demonstrate that power spectral examinations at rest are sufficiently reliable to diagnose early alterations in ANS in patients with DM. The spectral analysis technique is sensitive and reliable in investigation of ANS in patients with DM without clinically symptomatic autonomic dysfunction.
Resumo:
Background This is the first ever evaluation of narrow band imaging (NBI), an innovative endoscopic imaging procedure, for the visualisation of pleural processes. Methods The pleural cavity was examined in 26 patients with pleural effusions using both white light and narrow band imaging during thoracoscopy under local anaesthesia. Results In the great majority of the patients narrow band imaging depicted the blood vessels more clearly than white light, but failed to reveal any differences in number, shape or size. Only in a single case with pleura thickened by chronic inflammation and metastatic spread of lung cancer did narrow band imaging show vessels that were not detectable under white light. Conclusion It is not yet possible to assess to what extent the evidence provided by NBI is superior to that achieved with white light. Further studies are required, particularly in the early stages of pleural processes.
Resumo:
More than 500 endemic haplochromine cichlid species inhabit Lake Victoria. This striking species diversity is a classical example of recent explosive adaptive radiation thought to have happened within the last similar to 15,000 years. In this study, we examined the population structure and historical demography of 3 pelagic haplochromine cichlid species that resemble in morphology and have similar niche, Haplochromis (Yssichromis) laparogramma, Haplochromis (Y.) pyrrhocephalus, and Haplochromis (Y.) sp. "glaucocephalus". We investigated the sequences of the mitochondrial DNA control region and the insertion patterns of short interspersed elements (SINEs) of 759 individuals. We show that sympatric forms are genetically differentiated in 4 of 6 cases, but we also found apparent weakening of the genetic differentiation in areas with turbid water. We estimated the timings of population expansion and species divergence to coincide with the refilling of the lake at the Pleistocene/Holocene boundary. We also found that estimates can be altered significantly by the choice of the shape of the molecular clock. If we employ the nonlinear clock model of evolutionary rates in which the rates are higher towards the recent, the population expansion was dated at around the event of desiccation of the lake ca. 17,000 YBP. Thus, we succeeded in clarifying the species and population structure of closely related Lake Victoria cichlids and in showing the importance of applying appropriate clock calibrations in elucidating recent evolutionary events. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper gives a general overview of the challenges that arise in using narrow-band signals, such as GSM, for localisation based on the time properties of the signal. Specifically, synchronisation and retrieving of time information are addressed. We pursue two contributions, namely, analysis of achievable synchronisation precision and processing of narrowband signals that can enable localization down to a meter. Keywords-localization, narrow band signals, TOA, TDOA I.