43 resultados para B-Lymphocytes -- cytology -- immunology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently several novel and previously reported non-protein-coding RNAs (ncRNAs) have been identified to be upregulated upon Epstein-Barr virus (EBV) infection in human B-lymphocytes. A group of these significantly upregulated ncRNAs are called vault RNAs (vtRNAs). ,b Only about 5% of the total cellular vtRNAs are connected to the vault particle, the largest known ribonucleoprotein particle (RNP) in eukaryotic cells. However the function of this ncRNA family and moreover of the vault particle remains still rather unclear. Our previous findings suggest a link between EBV infection and vtRNA expression. Consequently we are interested which part of the viral genome is responsible for the upregulation and moreover which function the vtRNAs might possess during virus propagation. To address this question we have separately overexpressed specific EBV-encoded, latently expressed proteins in BL2-cells to determine the influence on the vault RNA levels. Thereby we identified one EBV-encoded protein, called Latent Membrane Protein 1 (LMP1), which significantly contributes to the vtRNA upregulation. We used LMP1 mutants to characterize the region of the protein and the responsible pathway for triggering the elevated vtRNA expression. Our results suggest that the NFkB- pathway might be involved in this process. To investigate a possible functional connection between the vtRNA and EBV infection, we have overexpressed vtRNA1-1 in BL41, a cell line usually not expressing this vault RNA. We show that overexpression of vtRNA1-1 leads to a better viral establishment and markedly protects cells from undergoing apoptosis. Knock-down of the major vault protein, the main component of the vault particle, had no effect on EBV infection and apoptosis resistance. Thus these results support the view that the observed phenotype is caused by the vtRNA rather than the vault particle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma) protein, a ubiquitously expressed RNA-binding protein, has been linked to a variety of cellular processes, such as RNA metabolism, microRNA biogenesis and DNA repair. However, the precise role of FUS protein remains unclear. Recently, FUS has been linked to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disorder characterized by the dysfunction and death of motor neurons. Based on the observation that some mutations in the FUS gene induce cytoplasmic accumulation of FUS aggregates, we decided to explore a loss-of-function situation (i.e. inhibition of FUS’ nuclear function) to unravel the role of this protein. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line which expresses a doxycycline induced shRNA targeting FUS and that specifically depletes the protein. In order to characterize this cell line, we have performed a whole transcriptome analysis by RNA deep sequencing. Preliminary results show that FUS depletion affects both expression and alternative splicing levels of several RNAs. When FUS is depleted we observed 330 downregulated and 81 upregulated genes. We also found that 395 splicing isoforms were downregulated, while 426 were upregulated. Currently, we are focusing our attention on the pathways which are mostly affected by FUS depletion. In addition, to further characterize the FUS-depleted cell line we have performed growth proliferation and survival assays. From these experiments emerge that FUS-depleted cells display growth proliferation alteration. In order to explain this observation, we have tested different hypothesis (e.g. apoptosis, senescence or slow-down growth). We observed that FUS-depleted cells growth slower than controls. Currently, we are looking for putative candidate targets causing this phenotype. Finally, since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are exploring the effects of DNA damage in FUS-depleted cells by monitoring important components of DNA Damage Response (DDR). Taken together, these studies may contribute to our knowledge of the role of FUS in these cellular processes and will allow us to draw a clearer picture of mechanisms of neurodegenerative diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma) protein, a ubiquitously expressed and highly conserved RNA binding protein, has been linked to a variety of cellular processes from mRNA processing to DNA repair. However, the precise function of FUS is not well understood. Recently, mutations in the FUS gene have been identified in familial and sporadic patients of Amyotrophic Lateral Sclerosis, a fatal neurodegenerative disorder characterized by dysfunction and death of motor neurons. Based on the observation that some mutations in the FUS gene induce cytoplasmic accumulation of FUS aggregates, we decided to explore a loss-of-function situation (i.e. inhibition of FUS’ nuclear function) to unravel the role of this protein. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line which expresses a doxycycline induced shRNA targeting FUS that efficiently depletes the protein. In order to characterize this cell line, we have characterized the poly(A) fraction by RNA deep sequencing. Preliminary results show that FUS depletion affects both mRNA expression and alternative splicing. Upon FUS depletion 330 genes are downregulated and 81 are upregulated. We also found that 395 splicing isoforms were downregulated, while 426 were upregulated. Currently, we are focusing our attention on the pathways which are mostly affected by FUS depletion. In addition, we are currently characterizing how FUS depletion affects cell proliferation and survival. We find that the lack of FUS impairs cell proliferation but does not induce apoptosis. Finally, since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are exploring the effects of DNA damage in FUS-depleted cells by monitoring important components of DNA Damage Response (DDR). Taken together, these studies may contribute to our knowledge of the role of FUS in these cellular processes and will allow us to draw a clearer picture of mechanisms of neurodegenerative diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma), a ubiquitously expressed RNA-binding protein, has been linked to a variety of cellular processes, including RNA metabolism, microRNA biogenesis and DNA repair. However, the precise cellular function of FUS remains unclear. Recently, mutations in the FUS gene have been found in ∼5% of familial Amyotrophic Lateral Sclerosis, a neurodegenerative disorder characterized by the dysfunction and death of motor neurons. Since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are investigating the effects of DNA damage both in the presence or in the absence of FUS. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line expressing a doxycycline-induced shRNA targeting FUS, which specifically depletes the protein. We have found that FUS depletion induces an activation of the DNA damage response (DDR). However, treatment with genotoxic agents did not induce any strong changes in ATM (Ataxia Telangiectasia Mutated)-mediated DDR signaling. Interestingly, genotoxic treatment results in changes in the subcellular localization of FUS in normal cells. We are currently exploring on one hand the mechanism by which FUS depletion leads to DNA damage, and on the other the functional significance of FUS relocalization after genotoxic stress.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chemokine processing by proteases is emerging as an important regulatory mechanism of leukocyte functions and possibly also of cancer progression. We screened a large panel of chemokines for degradation by cathepsins B and D, two proteases involved in tumor progression. Among the few substrates processed by both proteases, we focused on CCL20, the unique chemokine ligand of CCR6 that is expressed on immature dendritic cells and subtypes of memory lymphocytes. Analysis of the cleavage sites demonstrate that cathepsin B specifically cleaves off four C-terminally located amino acids and generates a CCL20(1-66) isoform with full functional activity. By contrast, cathepsin D totally inactivates the chemotactic potency of CCL20 by generating CCL20(1-55), CCL20(1-52), and a 12-aa C-terminal peptide CCL20(59-70). Proteolytic cleavage of CCL20 occurs also with chemokine bound to glycosaminoglycans. In addition, we characterized human melanoma cells as a novel CCL20 source and as cathepsin producers. CCL20 production was up-regulated by IL-1alpha and TNF-alpha in all cell lines tested, and in human metastatic melanoma cells. Whereas cathepsin D is secreted in the extracellular milieu, cathepsin B activity is confined to cytosol and cellular membranes. Our studies suggest that CCL20 processing in the extracellular environment of melanoma cells is exclusively mediated by cathepsin D. Thus, we propose a model where cathepsin D inactivates CCL20 and possibly prevents the establishment of an effective antitumoral immune response in melanomas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Theileria parva-infected lymphoblastoid cell lines of T or B cell origin were examined for IL-2 mRNA expression. T. parva-infected T cell lines could be of the CD4-CD8-, CD4+CD8-, CD4-CD8+, or CD4+CD8+ phenotype and express alpha beta or gamma delta TCR. By Northern blot analysis and amplification by the polymerase chain reaction, IL-2 mRNA could be detected in all T. parva-infected cell lines tested. IL-2 mRNA expression was also shown to be dependent on the continuous presence of the parasite in the host cell cytoplasm, because elimination of the parasite by treatment of T. parva-infected cell cultures with the theilericidal drug BW720c resulted in the disappearance of detectable IL-2 mRNA. The effect of anti-IL-2 antibodies on the proliferation of T. parva-infected cells was also tested. Inhibition experiments suggest that although IL-2 mRNA can be detected in all cell lines tested, not all T. parva-infected cell lines are dependent on IL-2 for their proliferation. Our data provide the first example for the constitutive expression of IL-2 mRNA in T and B cells caused by infection with an intracellular parasite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RhoH is a member of the Rho (ras homologous) GTPase family, yet it lacks GTPase activity and thus remains in its active conformation. Unlike other Rho GTPases, the RhoH gene transcript is restricted to hematopoietic cells and RhoH was shown to be required for adequate T-cell activation through the TCR. Here, we demonstrate that both blood T and B cells, but not neutrophils or monocytes, express RhoH protein under physiological conditions. Upon TCR complex activation, RhoH was degraded in lysosomes of primary and Jurkat T cells. Pharmacologic activation of T cells distal to the TCR complex had no effect on RhoH protein levels suggesting that early events during T-cell activation are required for RhoH protein degradation. In contrast to T cells, activation of the BCR in blood B cells was not associated with changes in RhoH levels. These data suggest that RhoH function might be regulated by lysosomal degradation of RhoH protein following TCR complex but not BCR activation. This newly discovered regulatory pathway of RhoH expression might limit TCR signaling and subsequent T-cell activation upon Ag contact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recognition of drugs by immune cells is usually explained by the hapten model, which states that endogenous metabolites bind irreversibly to protein to stimulate immune cells. Synthetic metabolites interact directly with protein-generating antigenic determinants for T cells; however, experimental evidence relating intracellular metabolism in immune cells and the generation of physiologically relevant Ags to functional immune responses is lacking. The aim of this study was to develop an integrated approach using animal and human experimental systems to characterize sulfamethoxazole (SMX) metabolism-derived antigenic protein adduct formation in immune cells and define the relationship among adduct formation, cell death, costimulatory signaling, and stimulation of a T cell response. Formation of SMX-derived adducts in APCs was dose and time dependent, detectable at nontoxic concentrations, and dependent on drug-metabolizing enzyme activity. Adduct formation above a threshold induced necrotic cell death, dendritic cell costimulatory molecule expression, and cytokine secretion. APCs cultured with SMX for 16 h, the time needed for drug metabolism, stimulated T cells from sensitized mice and lymphocytes and T cell clones from allergic patients. Enzyme inhibition decreased SMX-derived protein adduct formation and the T cell response. Dendritic cells cultured with SMX and adoptively transferred to recipient mice initiated an immune response; however, T cells were stimulated with adducts derived from SMX metabolism in APCs, not the parent drug. This study shows that APCs metabolize SMX; subsequent protein binding generates a functional T cell Ag. Adduct formation above a threshold stimulates cell death, which provides a maturation signal for dendritic cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estrogen treatment exerts a protective effect on experimental autoimmune encephalomyelitis (EAE) and is under clinical trial for multiple sclerosis therapy. Estrogens have been suspected to protect from CNS autoimmunity through their capacity to exert anti-inflammatory as well as neuroprotective effects. Despite the obvious impacts of estrogens on the pathophysiology of multiple sclerosis and EAE, the dominant cellular target that orchestrates the anti-inflammatory effect of 17β-estradiol (E2) in EAE is still ill defined. Using conditional estrogen receptor (ER) α-deficient mice and bone marrow chimera experiments, we show that expression of ERα is critical in hematopoietic cells but not in endothelial ones to mediate the E2 inhibitory effect on Th1 and Th17 cell priming, resulting in EAE protection. Furthermore, using newly created cell type-specific ERα-deficient mice, we demonstrate that ERα is required in T lymphocytes, but neither in macrophages nor dendritic cells, for E2-mediated inhibition of Th1/Th17 cell differentiation and protection from EAE. Lastly, in absence of ERα in host nonhematopoietic tissues, we further show that ERα signaling in T cells is necessary and sufficient to mediate the inhibitory effect of E2 on EAE development. These data uncover T lymphocytes as a major and nonredundant cellular target responsible for the anti-inflammatory effects of E2 in Th17 cell-driven CNS autoimmunity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Control of contagious bovine pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides Small Colony (MmmSC), remains an important goal in Africa. Subunit vaccines triggering B and T-cell responses could represent a promising approach. To this aim, the T-cell immunogenicity of four MmmSC lipoproteins (LppA, LppB, LppC and LppQ), present in African strains and able to elicit humoral response, was evaluated. In vitro assays revealed that only LppA was recognized by lymph node lymphocytes taken from three cattle, 3 weeks after MmmSC exposure. Maintenance of the LppA-specific response, relying on CD4 T-cells and IFN gamma production, was then demonstrated 1 year after infection. LppA is thus an important target for the CD4 T-cells generated early after MmmSC infection and persisting in the lymph nodes of recovered cattle. Its role as a protective antigen and ability to in vivo trigger both arms of the host immune response remain to be evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the recent years, a tremendous body of studies has addressed a broad variety of distinct topics in clinical allergy and immunology. In this update, we discuss selected recent data that provide clinically and pathogenetically relevant insights or identify potential novel targets and strategies for therapy. The role of the microbiome in shaping allergic immune responses and molecular, as well as cellular mechanisms of disease, is discussed separately and in the context of atopic dermatitis, as an allergic model disease. Besides summarizing novel evidence, this update highlights current areas of uncertainties and debates that, as we hope, shall stimulate scientific discussions and research activities in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 15-year-old domestic shorthair cat was presented with severe haematuria, stranguria, anorexia and lethargy of 10 days' duration. Physical examination revealed a large painful urinary bladder and pain in the cranial abdomen. Abdominal ultrasound revealed severe generalised mural thickening of both the gall bladder and the urinary bladder. Lymphoma was diagnosed on cytology of urine sediment and fine-needle aspirates of the gall bladder. Despite a transitory clinical improvement and partial remission following chemotherapy, the cat was euthanased six weeks after initial presentation due to recurrent clinical signs. Post-mortem examination confirmed a B-cell lymphoma in the urinary bladder. This report is the first description of gall bladder and bladder lymphoma in a cat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humoral immunity in response to an octavalent O-polysaccharide-toxin A conjugate Pseudomonas aeruginosa vaccine is well studied, and a phase III clinical study in cystic fibrosis (CF) patients is currently ongoing. In contrast, little is known about cellular immunity induced by this vaccine. Fifteen healthy volunteers were immunized on days 1 and 60. Parameters of cellular immunity were studied before vaccination on day 1, and on day 74. Analyses included flow cytometry of whole blood and antigen-induced proliferation of and cytokine production by lymphocyte cultures. The effects of immunization on the composition of peripheral blood lymphocytes as determined by flow cytometry were minor. In contrast, after immunization a highly significant increase of proliferation in response to stimulation with detoxified toxin A was noted: the stimulation index rose from 1.4 on day 1 to 42.2 on day 74 (restimulation with 0.4 microg/ml; P = 0.003). Immunization led to significant production of interferon (IFN)-gamma and tumour necrosis factor (TNF)-alpha by antigen-stimulated lymphocytes. In contrast, no significant induction of interleukin (IL)-4 or IL-10 was observed. In conclusion, immunization of healthy volunteers led to activation of cellular immunity including strong antigen-specific proliferation and cytokine production. In CF patients priming of the cellular immune system towards a Th1-like pattern would be of potential advantage. Therefore, confirmatory analyses in immunized CF patients with and without chronic infection with P. aeruginosa are foreseen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Histamine, leukotriene C4, IL-4, and IL-13 are major mediators of allergy and asthma. They are all formed by basophils and are released in particularly large quantities after stimulation with IL-3. Here we show that supernatants of activated mast cells or IL-3 qualitatively change the makeup of granules of human basophils by inducing de novo synthesis of granzyme B (GzmB), without induction of other granule proteins expressed by cytotoxic lymphocytes (granzyme A, perforin). This bioactivity of IL-3 is not shared by other cytokines known to regulate the function of basophils or lymphocytes. The IL-3 effect is restricted to basophil granulocytes as no constitutive or inducible expression of GzmB is detected in eosinophils or neutrophils. GzmB is induced within 6 to 24 hours, sorted into the granule compartment, and released by exocytosis upon IgE-dependent and -independent activation. In vitro, there is a close parallelism between GzmB, IL-13, and leukotriene C4 production. In vivo, granzyme B, but not the lymphoid granule marker granzyme A, is released 18 hours after allergen challenge of asthmatic patients in strong correlation with interleukin-13. Our study demonstrates an unexpected plasticity of the granule composition of mature basophils and suggests a role of granzyme B as a novel mediator of allergic diseases.