110 resultados para Axial loading


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spine is a complex structure that provides motion in three directions: flexion and extension, lateral bending and axial rotation. So far, the investigation of the mechanical and kinematic behavior of the basic unit of the spine, a motion segment, is predominantly a domain of in vitro experiments on spinal loading simulators. Most existing approaches to measure spinal stiffness intraoperatively in an in vivo environment use a distractor. However, these concepts usually assume a planar loading and motion. The objective of our study was to develop and validate an apparatus, that allows to perform intraoperative in vivo measurements to determine both the applied force and the resulting motion in three dimensional space. The proposed setup combines force measurement with an instrumented distractor and motion tracking with an optoelectronic system. As the orientation of the applied force and the three dimensional motion is known, not only force-displacement, but also moment-angle relations could be determined. The validation was performed using three cadaveric lumbar ovine spines. The lateral bending stiffness of two motion segments per specimen was determined with the proposed concept and compared with the stiffness acquired on a spinal loading simulator which was considered to be gold standard. The mean values of the stiffness computed with the proposed concept were within a range of ±15% compared to data obtained with the spinal loading simulator under applied loads of less than 5 Nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erratum to: Eur Spine J DOI 10.1007/s00586-011-1827-1 In the original article ‘‘Acknowledgments’’ was missing. The Acknowledgment is given below: Acknowledgments This project was supported by the Swiss National Science Foundation (SNF # 310030-127586/1) and the Department for Orthopedic Research, Insel University Hospital, Bern, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This randomised, controlled multicentre trial aimed at comparing two versions of a variable-thread dental implant design to a standard tapered dental implant design in cases of immediate functional loading for 36 months after loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background It has been demonstrated that frequency modulation of loading influences cellular response and metabolism in 3D tissues such as cartilage, bone and intervertebral disc. However, the mechano-sensitivity of cells in linear tissues such as tendons or ligaments might be more sensitive to changes in strain amplitude than frequency. Here, we hypothesized that tenocytes in situ are mechano-responsive to random amplitude modulation of strain. Methods We compared stochastic amplitude-modulated versus sinusoidal cyclic stretching. Rabbit tendon were kept in tissue-culture medium for twelve days and were loaded for 1h/day for six of the total twelve culture days. The tendons were randomly subjected to one of three different loading regimes: i) stochastic (2 – 7% random strain amplitudes), ii) cyclic_RMS (2–4.42% strain) and iii) cyclic_high (2 - 7% strain), all at 1 Hz and for 3,600 cycles, and one unloaded control. Results At the end of the culture period, the stiffness of the “stochastic” group was significantly lower than that of the cyclic_RMS and cyclic_high groups (both, p < 0.0001). Gene expression of eleven anabolic, catabolic and inflammatory genes revealed no significant differences between the loading groups. Conclusions We conclude that, despite an equivalent metabolic response, stochastically stretched tendons suffer most likely from increased mechanical microdamage, relative to cyclically loaded ones, which is relevant for tendon regeneration therapies in clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To analyze the biomechanical changes induced by partial lateral corpectomy (PLC) and a combination of PLC and hemilaminectomy in a T13-L3 spinal segment in nonchondrodystrophic dogs. STUDY DESIGN: In vitro biomechanical cadaveric study. SAMPLE POPULATION: T13-L3 spinal segments (n = 10) of nonchondrodystrophic dogs (weighing, 25-38 kg). METHODS: A computed tomography (CT) scan of each T13-L3 spinal segment was performed. A loading simulator for flexibility analysis was used to determine the range of motion (ROM) and neutral zone (NZ) during flexion/extension, lateral bending, and axial rotation. A servohydraulic testing machine was used to determine the changes in stiffness during compression, dorsoventral, and lateral shear. All spines were tested intact, after PLC in the left intervertebral space of L1-L2, and after a combination of PLC and hemilaminectomy. RESULTS: Statistically significant increases in ROM and NZ (P < .05) were detected during flexion/extension and lateral bending when PLC was performed. A significant increase in ROM (P < .001) was noted during axial rotation and flexion after PLC and hemilaminectomy. Stiffness decreased significantly during compression and dorsoventral shear after each procedure. Decreased stiffness during lateral shear was only significant after a combination of both procedures. CONCLUSION: PLC might lead to some spinal instability; these changes are enhanced when a hemilaminectomy is added.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to explore the sensitivity and robustness of T2 mapping in the detection and quantification of early degenerative cartilage changes at the patella.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To demonstrate the potential benefits of biochemical axial T2 mapping of intervertebral discs (IVDs) regarding the detection and grading of early stages of degenerative disc disease using 1.5-Tesla magnetic resonance imaging (MRI) in a clinical setting.