28 resultados para Automatic Peak Detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by the reported dearth of debris discs around M stars, we use survival models to study the occurrence of planetesimal discs around them. These survival models describe a planetesimal disc with a small number of parameters, determine if it may survive a series of dynamical processes and compute the associated infrared excess. For the Wide-field Infrared Survey Explorer (WISE) satellite, we demonstrate that the dearth of debris discs around M stars may be attributed to the small semimajor axes generally probed if either: (1) the dust grains behave like blackbodies emitting at a peak wavelength coincident with the observed one; (2) or the grains are hotter than predicted by their blackbody temperatures and emit at peak wavelengths that are shorter than the observed one. At these small distances from the M star, planetesimals are unlikely to survive or persist for time-scales of 300 Myr or longer if the disc is too massive. Conversely, our survival models allow for the existence of a large population of low-mass debris discs that are too faint to be detected with current instruments. We gain further confidence in our interpretation by demonstrating the ability to compute infrared excesses for Sun-like stars that are broadly consistent with reported values in the literature. However, our interpretation becomes less clear and large infrared excesses are allowed if only one of these scenarios holds: (3) the dust grains are hotter than blackbody and predominantly emit at the observed wavelength; (4) or are blackbody in nature and emit at peak wavelengths longer than the observed one. Both scenarios imply that the parent planetesimals reside at larger distances from the star than inferred if the dust grains behaved like blackbodies. In all scenarios, we show that the infrared excesses detected at 22 μm (via WISE) and 70 μm (via Spitzer) from AU Mic are easily reconciled with its young age (12 Myr). Conversely, the existence of the old debris disc (2–8 Gyr) from GJ 581 is due to the large semimajor axes probed by the Herschel PACS instrument. We elucidate the conditions under which stellar wind drag may be neglected when considering dust populations around M stars. The WISE satellite should be capable of detecting debris discs around young M stars with ages ∼10 Myr.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise e.g., Fundus photography, Optical Coherence Tomography (OCT), Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The presented article’s goal is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI which was not visible before like vessels and the macula. This article’s contributions include automatic detection of the optic disc, the fovea, the optic axis and an automatic segmentation of the vitreous humor of the eye.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE In contrast to conventional breast imaging techniques, one major diagnostic benefit of breast magnetic resonance imaging (MRI) is the simultaneous acquisition of morphologic and dynamic enhancement characteristics, which are based on angiogenesis and therefore provide insights into tumor pathophysiology. The aim of this investigation was to intraindividually compare 2 macrocyclic MRI contrast agents, with low risk for nephrogenic systemic fibrosis, in the morphologic and dynamic characterization of histologically verified mass breast lesions, analyzed by blinded human evaluation and a fully automatic computer-assisted diagnosis (CAD) technique. MATERIALS AND METHODS Institutional review board approval and patient informed consent were obtained. In this prospective, single-center study, 45 women with 51 histopathologically verified (41 malignant, 10 benign) mass lesions underwent 2 identical examinations at 1.5 T (mean time interval, 2.1 days) with 0.1-mmol kg doses of gadoteric acid and gadobutrol. All magnetic resonance images were visually evaluated by 2 experienced, blinded breast radiologists in consensus and by an automatic CAD system, whereas the morphologic and dynamic characterization as well as the final human classification of lesions were performed based on the categories of the Breast imaging reporting and data system MRI atlas. Lesions were also classified by defining their probability of malignancy (morpho-dynamic index; 0%-100%) by the CAD system. Imaging results were correlated with histopathology as gold standard. RESULTS The CAD system coded 49 of 51 lesions with gadoteric acid and gadobutrol (detection rate, 96.1%); initial signal increase was significantly higher for gadobutrol than for gadoteric acid for all and the malignant coded lesions (P < 0.05). Gadoteric acid resulted in more postinitial washout curves and fewer continuous increases of all and the malignant lesions compared with gadobutrol (CAD hot spot regions, P < 0.05). Morphologically, the margins of the malignancies were different between the 2 agents, whereas gadobutrol demonstrated more spiculated and fewer smooth margins (P < 0.05). Lesion classifications by the human observers and by the morpho-dynamic index compared with the histopathologic results did not significantly differ between gadoteric acid and gadobutrol. CONCLUSIONS Macrocyclic contrast media can be reliably used for breast dynamic contrast-enhanced MRI. However, gadoteric acid and gadobutrol differed in some dynamic and morphologic characterization of histologically verified breast lesions in an intraindividual, comparison. Besides the standardization of technical parameters and imaging evaluation of breast MRI, the standardization of the applied contrast medium seems to be important to receive best comparable MRI interpretation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aviation security strongly depends on screeners' performance in the detection of threat objects in x-ray images of passenger bags. We examined for the first time the effects of stress and stress-induced cortisol increases on detection performance of hidden weapons in an x-ray baggage screening task. We randomly assigned 48 participants either to a stress or a nonstress group. The stress group was exposed to a standardized psychosocial stress test (TSST). Before and after stress/nonstress, participants had to detect threat objects in a computer-based object recognition test (X-ray ORT). We repeatedly measured salivary cortisol and X-ray ORT performance before and after stress/nonstress. Cortisol increases in reaction to psychosocial stress induction but not to nonstress independently impaired x-ray detection performance. Our results suggest that stress-induced cortisol increases at peak reactivity impair x-ray screening performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extraction of both pelvic and femoral surface models of a hip joint from CT data for computer-assisted pre-operative planning of hip arthroscopy is addressed. We present a method for a fully automatic image segmentation of a hip joint. Our method works by combining fast random forest (RF) regression based landmark detection, atlas-based segmentation, with articulated statistical shape model (aSSM) based hip joint reconstruction. The two fundamental contributions of our method are: (1) An improved fast Gaussian transform (IFGT) is used within the RF regression framework for a fast and accurate landmark detection, which then allows for a fully automatic initialization of the atlas-based segmentation; and (2) aSSM based fitting is used to preserve hip joint structure and to avoid penetration between the pelvic and femoral models. Validation on 30 hip CT images show that our method achieves high performance in segmenting pelvis, left proximal femur, and right proximal femur surfaces with an average accuracy of 0.59 mm, 0.62 mm, and 0.58 mm, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In clinical practice, traditional X-ray radiography is widely used, and knowledge of landmarks and contours in anteroposterior (AP) pelvis X-rays is invaluable for computer aided diagnosis, hip surgery planning and image-guided interventions. This paper presents a fully automatic approach for landmark detection and shape segmentation of both pelvis and femur in conventional AP X-ray images. Our approach is based on the framework of landmark detection via Random Forest (RF) regression and shape regularization via hierarchical sparse shape composition. We propose a visual feature FL-HoG (Flexible- Level Histogram of Oriented Gradients) and a feature selection algorithm based on trace radio optimization to improve the robustness and the efficacy of RF-based landmark detection. The landmark detection result is then used in a hierarchical sparse shape composition framework for shape regularization. Finally, the extracted shape contour is fine-tuned by a post-processing step based on low level image features. The experimental results demonstrate that our feature selection algorithm reduces the feature dimension in a factor of 40 and improves both training and test efficiency. Further experiments conducted on 436 clinical AP pelvis X-rays show that our approach achieves an average point-to-curve error around 1.2 mm for femur and 1.9 mm for pelvis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extraction of surface models of a hip joint from CT data is a pre-requisite step for computer assisted diagnosis and planning (CADP) of periacetabular osteotomy (PAO). Most of existing CADP systems are based on manual segmentation, which is time-consuming and hard to achieve reproducible results. In this paper, we present a Fully Automatic CT Segmentation (FACTS) approach to simultaneously extract both pelvic and femoral models. Our approach works by combining fast random forest (RF) regression based landmark detection, multi-atlas based segmentation, with articulated statistical shape model (aSSM) based fitting. The two fundamental contributions of our approach are: (1) an improved fast Gaussian transform (IFGT) is used within the RF regression framework for a fast and accurate landmark detection, which then allows for a fully automatic initialization of the multi-atlas based segmentation; and (2) aSSM based fitting is used to preserve hip joint structure and to avoid penetration between the pelvic and femoral models. Taking manual segmentation as the ground truth, we evaluated the present approach on 30 hip CT images (60 hips) with a 6-fold cross validation. When the present approach was compared to manual segmentation, a mean segmentation accuracy of 0.40, 0.36, and 0.36 mm was found for the pelvis, the left proximal femur, and the right proximal femur, respectively. When the models derived from both segmentations were used to compute the PAO diagnosis parameters, a difference of 2.0 ± 1.5°, 2.1 ± 1.6°, and 3.5 ± 2.3% were found for anteversion, inclination, and acetabular coverage, respectively. The achieved accuracy is regarded as clinically accurate enough for our target applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Near-infrared spectroscopy (NIRS) enables the non-invasive measurement of changes in hemodynamics and oxygenation in tissue. Changes in light-coupling due to movement of the subject can cause movement artifacts (MAs) in the recorded signals. Several methods have been developed so far that facilitate the detection and reduction of MAs in the data. However, due to fixed parameter values (e.g., global threshold) none of these methods are perfectly suitable for long-term (i.e., hours) recordings or were not time-effective when applied to large datasets. We aimed to overcome these limitations by automation, i.e., data adaptive thresholding specifically designed for long-term measurements, and by introducing a stable long-term signal reconstruction. Our new technique (“acceleration-based movement artifact reduction algorithm”, AMARA) is based on combining two methods: the “movement artifact reduction algorithm” (MARA, Scholkmann et al. Phys. Meas. 2010, 31, 649–662), and the “accelerometer-based motion artifact removal” (ABAMAR, Virtanen et al. J. Biomed. Opt. 2011, 16, 087005). We describe AMARA in detail and report about successful validation of the algorithm using empirical NIRS data, measured over the prefrontal cortex in adolescents during sleep. In addition, we compared the performance of AMARA to that of MARA and ABAMAR based on validation data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Any image processing object detection algorithm somehow tries to integrate the object light (Recognition Step) and applies statistical criteria to distinguish objects of interest from other objects or from pure background (Decision Step). There are various possibilities how these two basic steps can be realized, as can be seen in the different proposed detection methods in the literature. An ideal detection algorithm should provide high recognition sensitiv ity with high decision accuracy and require a reasonable computation effort . In reality, a gain in sensitivity is usually only possible with a loss in decision accuracy and with a higher computational effort. So, automatic detection of faint streaks is still a challenge. This paper presents a detection algorithm using spatial filters simulating the geometrical form of possible streaks on a CCD image. This is realized by image convolution. The goal of this method is to generate a more or less perfect match between a streak and a filter by varying the length and orientation of the filters. The convolution answers are accepted or rejected according to an overall threshold given by the ackground statistics. This approach yields as a first result a huge amount of accepted answers due to filters partially covering streaks or remaining stars. To avoid this, a set of additional acceptance criteria has been included in the detection method. All criteria parameters are justified by background and streak statistics and they affect the detection sensitivity only marginally. Tests on images containing simulated streaks and on real images containing satellite streaks show a very promising sensitivity, reliability and running speed for this detection method. Since all method parameters are based on statistics, the true alarm, as well as the false alarm probability, are well controllable. Moreover, the proposed method does not pose any extraordinary demands on the computer hardware and on the image acquisition process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS Skeletal muscle wasting affects 20% of patients with chronic heart failure and has serious implications for their activities of daily living. Assessment of muscle wasting is technically challenging. C-terminal agrin-fragment (CAF), a breakdown product of the synaptically located protein agrin, has shown early promise as biomarker of muscle wasting. We sought to investigate the diagnostic properties of CAF in muscle wasting among patients with heart failure. METHODS AND RESULTS We assessed serum CAF levels in 196 patients who participated in the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Muscle wasting was identified using dual-energy X-ray absorptiometry (DEXA) in 38 patients (19.4%). Patients with muscle wasting demonstrated higher CAF values than those without (125.1 ± 59.5 pmol/L vs. 103.8 ± 42.9 pmol/L, P = 0.01). Using receiver operating characteristics (ROC), we calculated the optimal CAF value to identify patients with muscle wasting as >87.5 pmol/L, which had a sensitivity of 78.9% and a specificity of 43.7%. The area under the ROC curve was 0.63 (95% confidence interval 0.56-0.70). Using simple regression, we found that serum CAF was associated with handgrip (R = - 0.17, P = 0.03) and quadriceps strength (R = - 0.31, P < 0.0001), peak oxygen consumption (R = - 0.5, P < 0.0001), 6-min walk distance (R = - 0.32, P < 0.0001), and gait speed (R = - 0.2, P = 0.001), as well as with parameters of kidney and liver function, iron metabolism and storage. CONCLUSION CAF shows good sensitivity for the detection of skeletal muscle wasting in patients with heart failure. Its assessment may be useful to identify patients who should undergo additional testing, such as detailed body composition analysis. As no other biomarker is currently available, further investigation is warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automatic segmentation of the hip joint with pelvis and proximal femur surfaces from CT images is essential for orthopedic diagnosis and surgery. It remains challenging due to the narrowness of hip joint space, where the adjacent surfaces of acetabulum and femoral head are hardly distinguished from each other. This chapter presents a fully automatic method to segment pelvic and proximal femoral surfaces from hip CT images. A coarse-to-fine strategy was proposed to combine multi-atlas segmentation with graph-based surface detection. The multi-atlas segmentation step seeks to coarsely extract the entire hip joint region. It uses automatically detected anatomical landmarks to initialize and select the atlas and accelerate the segmentation. The graph based surface detection is to refine the coarsely segmented hip joint region. It aims at completely and efficiently separate the adjacent surfaces of the acetabulum and the femoral head while preserving the hip joint structure. The proposed strategy was evaluated on 30 hip CT images and provided an average accuracy of 0.55, 0.54, and 0.50 mm for segmenting the pelvis, the left and right proximal femurs, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diet-related chronic diseases severely affect personal and global health. However, managing or treating these diseases currently requires long training and high personal involvement to succeed. Computer vision systems could assist with the assessment of diet by detecting and recognizing different foods and their portions in images. We propose novel methods for detecting a dish in an image and segmenting its contents with and without user interaction. All methods were evaluated on a database of over 1600 manually annotated images. The dish detection scored an average of 99% accuracy with a .2s/image run time, while the automatic and semi-automatic dish segmentation methods reached average accuracies of 88% and 91% respectively, with an average run time of .5s/image, outperforming competing solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article discusses the detection of discourse markers (DM) in dialog transcriptions, by human annotators and by automated means. After a theoretical discussion of the definition of DMs and their relevance to natural language processing, we focus on the role of like as a DM. Results from experiments with human annotators show that detection of DMs is a difficult but reliable task, which requires prosodic information from soundtracks. Then, several types of features are defined for automatic disambiguation of like: collocations, part-of-speech tags and duration-based features. Decision-tree learning shows that for like, nearly 70% precision can be reached, with near 100% recall, mainly using collocation filters. Similar results hold for well, with about 91% precision at 100% recall.