25 resultados para Augmented Dice


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertebral cement augmentation can restore the stiffness and strength of a fractured vertebra and relieve chronic pain. Previous finite element analysis, biomechanical tests and clinical studies have indirectly associated new adjacent vertebral fractures following augmentation to altered loading. The aim of this repeated measures in situ biomechanical study was to determine the changes in the adjacent and augmented endplate deformation following cement augmentation of human cadaveric functional spine units (FSU) using micro-computed tomography (micro-CT). The surrounding soft tissue and posterior elements of 22 cadaveric human FSU were removed. FSU were assigned to two groups, control (n = 8) (loaded on day 1 and day 2) and augmented (n = 14) (loaded on day 1, augmented 20% cement fill, and loaded on day 2). The augmented group was further subdivided into a prophylactic augmentation group (n = 9), and vertebrae which spontaneously fractured during loading on day 1 (n = 5). The FSU were axially loaded (200, 1,000, 1,500-2,000 N) within a custom made radiolucent, saline filled loading device. At each loading step, FSUs were scanned using the micro-CT. Endplate heights were determined using custom software. No significant increase in endplate deformation following cement augmentation was noted for the adjacent endplate (P > 0.05). The deformation of the augmented endplate was significantly reduced following cement augmentation for both the prophylactic and fracture group (P < 0.05, P < 0.01, respectively). Endplate deformation of the controls showed no statistically significant differences between loading on day 1 and day 2. A linear relationship was noted between the applied compressive load and endplate deflection (R (2) = 0.58). Evidence of significant endplate deformation differences between unaugmented and augmented FSU, while evident for the augmented endplate, was not present for the adjacent endplate. This non-invasive micro-CT method may also be useful to investigate endplate failure, and parameters that predict vertebral failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In this paper we present a landmark-based augmented reality (AR) endoscope system for endoscopic paranasal and transnasal surgeries along with fast and automatic calibration and registration procedures for the endoscope. METHODS: Preoperatively the surgeon selects natural landmarks or can define new landmarks in CT volume. These landmarks are overlaid, after proper registration of preoperative CT to the patient, on the endoscopic video stream. The specified name of the landmark, along with selected colour and its distance from the endoscope tip, is also augmented. The endoscope optics are calibrated and registered by fast and automatic methods. Accuracy of the system is evaluated in a metallic grid and cadaver set-up. RESULTS: Root mean square (RMS) error of the system is 0.8 mm in a controlled laboratory set-up (metallic grid) and was 2.25 mm during cadaver studies. CONCLUSIONS: A novel landmark-based AR endoscope system is implemented and its accuracy is evaluated. Augmented landmarks will help the surgeon to orientate and navigate the surgical field. Studies prove the capability of the system for the proposed application. Further clinical studies are planned in near future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND CONTEXT: Closed reduction and internal fixation by an anterior approach is an established option for operative treatment of displaced Type II odontoid fractures. In elderly patients, however, inadequate screw purchase in osteoporotic bone can result in severe procedure-related complications. PURPOSE: To improve the stability of odontoid fracture screw fixation in the elderly using a new technique that includes injection of polymethylmethacrylat (PMMA) cement into the C2 body. STUDY DESIGN: Retrospective review of hospital and outpatient records as well as radiographs of elderly patients treated in a university hospital department of orthopedic surgery. PATIENT SAMPLE: Twenty-four elderly patients (8 males and 16 females; mean age, 81 years; range, 62-98 years) with Type II fractures of the dens. OUTCOME MEASURES: Complications, cement leakage (symptomatic/asymptomatic), operation time, loss of reduction, pseudarthrosis and revision surgery, patient complaints, return to normal activities, and signs of neurologic complications were all documented. METHODS: After closed reduction and anterior approach to the inferior border of C2, a guide wire is advanced to the tip of the odontoid under biplanar fluoroscopic control. Before the insertion of one cannulated, self-drilling, short thread screws, a 12 gauge Yamshidi cannula is inserted from anterior and 1 to 3 mL of high-viscosity PMMA cement is injected into the anteroinferior portion of the C2 body. During polymerization of the cement, the screws are further inserted using a lag-screw compression technique. The cervical spine then is immobilized with a soft collar for 8 weeks postoperatively. RESULTS: Anatomical reduction of the dens was achieved in all 24 patients. Mean operative time was 64 minutes (40-90 minutes). Early loss of reduction occurred in three patients, but revision surgery was indicated in only one patient 2 days after primary surgery. One patient died within the first eight postoperative weeks, one within 3 months after surgery. In five patients, asymptomatic cement leakage was observed (into the C1-C2 joint in three patients, into the fracture in two). Conventional radiologic follow-up at 2 and 6 months confirmed anatomical healing in 16 of the19 patients with complete follow-up. In two patients, the fractures healed in slight dorsal angulation; one patient developed a asymptomatic pseudarthrosis. All patients were able to resume their pretrauma level of activity. CONCLUSIONS: Cement augmentation of the screw in Type II odontoid fractures in elderly patients is technically feasible in a clinical setting with a low complication rate. This technique may improve screw purchase, especially in the osteoporotic C2 body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES Osteocytes, the most common cells of the bone, are buried in lacunae. Density and area of the osteocyte lacunae change with increasing maturation of the newly formed bone. Evaluation of osteocyte lacunae can therefore provide insights into the process of graft consolidation. MATERIALS AND METHODS Here, we determined the osteocyte lacunar density (number of osteocyte lacunae per bone area; N.Ot/BAr) and the osteocyte lacunar area in μm(2) (Lac.Ar) in histological specimens 6 and 12 weeks after the sinuses of 10 minipigs were augmented with Bio-Oss(®) , a deproteinized bovine bone mineral, and Ostim(®) , an aqueous paste of synthetic nanoparticular hydroxyapatite. The region of interest was defined by the following criteria: (i) >1 mm from the host bone, (ii) >0.5 mm from the sinus mucosa, (iii) minimum area of 0.2 mm(2) , and (iv) bone tissue spanning at least two bone substitute particles. RESULTS The overall osteocyte lacunar density was significantly higher in the Bio-Oss(®) group than in the Ostim(®) group and decreased during the observation period at a similar range in both groups. The osteocyte lacunar area was smaller in the Bio-Oss(®) group than the Ostim(®) group but there was no significant change within the groups over time. CONCLUSIONS These results suggest that bone substitutes affect the osteocyte lacunar density and the osteocyte lacunar area in the newly formed bone within the augmented sinus in this particular model situation. These measures can provide insights into the maturation of newly formed bone in the augmented sinus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE The purpose of this study was to document the long-term outcome of Brånemark implants installed in augmented maxillary bone and to identify parameters that are associated with peri-implant bone level. MATERIAL AND METHODS Patients of a periodontal practice who had been referred to a maxillofacial surgeon for iliac crest bone grafting in the atrophic maxilla were retrospectively recruited. Five months following grafting, they received 7-8 turned Brånemark implants. Following submerged healing of another 5 months, implants were uncovered and restorative procedures for fixed rehabilitation were initiated 2-3 months thereafter. The primary outcome variable was bone level defined as the distance from the implant-abutment interface to the first visible bone-to-implant contact. Secondary outcome variables included plaque index, bleeding index, probing depth, and levels of 40 species in subgingival plaque samples as identified by means of checkerboard DNA-DNA hybridization. RESULTS Nine out of 16 patients (eight females, one male; mean age 59) with 71 implants agreed to come in for evaluation after on average 9 years (SD 4; range 3-13) of function. One implant was deemed mobile at the time of inspection. Clinical conditions were acceptable with 11% of the implants showing pockets ≥ 5 mm. Periodontopathogens were encountered frequently and in high numbers. Clinical parameters and bacterial levels were highly patient dependent. The mean bone level was 2.30 mm (SD 1.53; range 0.00-6.95), with 23% of the implants demonstrating advanced resorption (bone level > 3 mm). Regression analysis showed a significant association of the patient (p < .001) and plaque index (p = .007) with bone level. CONCLUSIONS The long-term outcome of Brånemark implants installed in iliac crest-augmented maxillary bone is acceptable; however, advanced peri-implant bone loss is rather common and indicative of graft resorption. This phenomenon is patient dependent and seems also associated with oral hygiene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Finite element models of augmented vertebral bodies require a realistic modelling of the cement infiltrated region. Most methods published so far used idealized cement shapes or oversimplified material models for the augmented region. In this study, an improved, anatomy-specific, homogenized finite element method was developed and validated to predict the apparent as well as the local mechanical behavior of augmented vertebral bodies. Methods Forty-nine human vertebral body sections were prepared by removing the cortical endplates and scanned with high-resolution peripheral quantitative CT before and after injection of a standard and a low-modulus bone cement. Forty-one specimens were tested in compression to measure stiffness, strength and contact pressure distributions between specimens and loading-plates. From the remaining eight, fourteen cylindrical specimens were extracted from the augmented region and tested in compression to obtain material properties. Anatomy-specific finite element models were generated from the CT data. The models featured element-specific, density-fabric-based material properties, damage accumulation, real cement distributions and experimentally determined material properties for the augmented region. Apparent stiffness and strength as well as contact pressure distributions at the loading plates were compared between simulations and experiments. Findings The finite element models were able to predict apparent stiffness (R2 > 0.86) and apparent strength (R2 > 0.92) very well. Also, the numerically obtained pressure distributions were in reasonable quantitative (R2 > 0.48) and qualitative agreement with the experiments. Interpretation The proposed finite element models have proven to be an accurate tool for studying the apparent as well as the local mechanical behavior of augmented vertebral bodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Stereotactic navigation technology can enhance guidance during surgery and enable the precise reproduction of planned surgical strategies. Currently, specific systems (such as the CAS-One system) are available for instrument guidance in open liver surgery. This study aims to evaluate the implementation of such a system for the targeting of hepatic tumors during robotic liver surgery. MATERIAL AND METHODS Optical tracking references were attached to one of the robotic instruments and to the robotic endoscopic camera. After instrument and video calibration and patient-to-image registration, a virtual model of the tracked instrument and the available three-dimensional images of the liver were displayed directly within the robotic console, superimposed onto the endoscopic video image. An additional superimposed targeting viewer allowed for the visualization of the target tumor, relative to the tip of the instrument, for an assessment of the distance between the tumor and the tool for the realization of safe resection margins. RESULTS Two cirrhotic patients underwent robotic navigated atypical hepatic resections for hepatocellular carcinoma. The augmented endoscopic view allowed for the definition of an accurate resection margin around the tumor. The overlay of reconstructed three-dimensional models was also used during parenchymal transection for the identification of vascular and biliary structures. Operative times were 240 min in the first case and 300 min in the second. There were no intraoperative complications. CONCLUSIONS The da Vinci Surgical System provided an excellent platform for image-guided liver surgery with a stable optic and instrumentation. Robotic image guidance might improve the surgeon's orientation during the operation and increase accuracy in tumor resection. Further developments of this technological combination are needed to deal with organ deformation during surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intraoperative laparoscopic calibration remains a challenging task. In this work we present a new method and instrumentation for intraoperative camera calibration. Contrary to conventional calibration methods, the proposed technique allows intraoperative laparoscope calibration from single perspective observations, resulting in a standardized scheme for calibrating in a clinical scenario. Results show an average displacement error of 0.52 ± 0.19 mm, indicating sufficient accuracy for clinical use. Additionally, the proposed method is validated clinically by performing a calibration during the surgery.