20 resultados para Astronomy, Arab--Early works to 1800
Resumo:
The head impulse test (HIT) can identify a deficient vestibulo-ocular reflex (VOR) by the compensatory saccade (CS) generated once the head stops moving. The inward HIT is considered safer than the outward HIT, yet might have an oculomotor advantage given that the subject would presumably know the direction of head rotation. Here, we compare CS latencies following inward (presumed predictable) and outward (more unpredictable) HITs after acute unilateral vestibular nerve deafferentation. Seven patients received inward and outward HITs delivered at six consecutive postoperative days (POD) and again at POD 30. All head impulses were recorded by portable video-oculography. CS included those occurring during (covert) or after (overt) head rotation. Inward HITs included mean CS latencies (183.48 ms ± 4.47 SE) that were consistently shorter than those generated during outward HITs in the first 6 POD (p = 0.0033). Inward HITs induced more covert saccades compared to outward HITs, acutely. However, by POD 30 there were no longer any differences in latencies or proportions of CS and direction of head rotation. Patients with acute unilateral vestibular loss likely use predictive cues of head direction to elicit early CS to keep the image centered on the fovea. In acute vestibular hypofunction, inwardly applied HITs may risk a preponderance of covert saccades, yet this difference largely disappears within 30 days. Advantages of inwardly applied HITs are discussed and must be balanced against the risk of a false-negative HIT interpretation.
Resumo:
Maternal thromboembolism and a spectrum of placenta-mediated complications including the pre-eclampsia syndromes, fetal growth restriction, fetal loss, and abruption manifest a shared etiopathogenesis and predisposing risk factors. Furthermore, these maternal and fetal complications are often linked to subsequent maternal health consequences that comprise the metabolic syndrome, namely, thromboembolism, chronic hypertension, and type II diabetes. Traditionally, several lines of evidence have linked vasoconstriction, excessive thrombosis and inflammation, and impaired trophoblast invasion at the uteroplacental interface as hallmark features of the placental complications. "Omic" technologies and biomarker development have been largely based upon advances in vascular biology, improved understanding of the molecular basis and biochemical pathways responsible for the clinically relevant diseases, and increasingly robust large cohort and/or registry based studies. Advances in understanding of innate and adaptive immunity appear to play an important role in several pregnancy complications. Strategies aimed at improving prediction of these pregnancy complications are often incorporating hemodynamic blood flow data using non-invasive imaging technologies of the utero-placental and maternal circulations early in pregnancy. Some evidence suggests that a multiple marker approach will yield the best performing prediction tools, which may then in turn offer the possibility of early intervention to prevent or ameliorate these pregnancy complications. Prediction of maternal cardiovascular and non-cardiovascular consequences following pregnancy represents an important area of future research, which may have significant public health consequences not only for cardiovascular disease, but also for a variety of other disorders, such as autoimmune and neurodegenerative diseases.
Resumo:
Context. We present an investigation of the surface properties of areas on the nucleus of comet 67P/Churyumov-Gerasimenko. Aims. We aim to show that transport of material from one part of the cometary nucleus to another is a significant mechanism that influences the appearance of the nucleus and the surface thermal properties. Methods. We used data from the OSIRIS imaging system onboard the Rosetta spacecraft to identify surface features on the nucleus that can be produced by various transport mechanisms. We used simple calculations based on previous works to establish the plausibility of dust transport from one part of the nucleus to another. Results. We show by observation and modeling that "airfall" as a consequence of non-escaping large particles emitted from the neck region of the nucleus is a plausible explanation for the smooth thin deposits in the northern hemisphere of the nucleus. The consequences are also discussed. We also present observations of aeolian ripples and ventifacts. We show by numerical modeling that a type of saltation is plausible even under the rarified gas densities seen at the surface of the nucleus. However, interparticle cohesive forces present difficulties for this model, and an alternative mechanism for the initiation of reptation and creep may result from the airfall mechanism. The requirements on gas density and other parameters of this alternative make it a more attractive explanation for the observations. The uncertainties and implications are discussed.
Resumo:
BACKGROUND There are concerns about the effects of in utero exposure to antiretroviral drugs (ARVs) on the development of HIV-exposed but uninfected (HEU) children. The aim of this study was to evaluate whether in utero exposure to ARVs is associated with lower birth weight/height and reduced growth during the first 2 years of life. METHODS This cohort study was conducted among HEU infants born between 1996 and 2010 in Tertiary children's hospital in Rio de Janeiro, Brazil. Weight was measured by mechanical scale, and height was measured by measuring board. Z-scores for weight-for-age (WAZ), length-for-age (LAZ) and weight-for-length were calculated. We modeled trajectories by mixed-effects models and adjusted for mother's age, CD4 cell count, viral load, year of birth and family income. RESULTS A total of 588 HEU infants were included of whom 155 (26%) were not exposed to ARVs, 114 (19%) were exposed early (first trimester) and 319 (54%) later. WAZ were lower among infants exposed early compared with infants exposed later: adjusted differences were -0.52 (95% confidence interval [CI]: -0.99 to -0.04, P = 0.02) at birth and -0.22 (95% CI: -0.47 to 0.04, P = 0.10) during follow-up. LAZ were lower during follow-up: -0.35 (95% CI: -0.63 to -0.08, P = 0.01). There were no differences in weight-for-length scores. Z-scores of infants exposed late during pregnancy were similar to unexposed infants. CONCLUSIONS In HEU children, early exposure to ARVs was associated with lower WAZ at birth and lower LAZ up to 2 years of life. Growth of HEU children needs to be monitored closely.
Resumo:
The lifespan of plants ranges from a few weeks in annuals to thousands of years in trees. It is hard to explain such extreme longevity considering that DNA replication errors inevitably cause mutations. Without purging through meiotic recombination, the accumulation of somatic mutations will eventually result in mutational meltdown, a phenomenon known as Muller’s ratchet. Nevertheless, the lifespan of trees is limited more often by incidental disease or structural damage than by genetic aging. The key determinants of tree architecture are the axillary meristems, which form in the axils of leaves and grow out to form branches. The number of branches is low in annual plants, but in perennial plants iterative branching can result in thousands of terminal branches. Here, we use stem cell ablation and quantitative cell-lineage analysis to show that axillary meristems are set aside early, analogous to the metazoan germline. While neighboring cells divide vigorously, axillary meristem precursors maintain a quiescent state, with only 7–9 cell divisions occurring between the apical and axillary meristem. During iterative branching, the number of branches increases exponentially, while the number of cell divisions increases linearly. Moreover, computational modeling shows that stem cell arrangement and positioning of axillary meristems distribute somatic mutations around the main shoot, preventing their fixation and maximizing genetic heterogeneity. These features slow down Muller’s ratchet and thereby extend lifespan.