40 resultados para Antigens, Protozoan


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Many parasitic organisms, eukaryotes as well as bacteria, possess surface antigens with amino acid repeats. Making up the interface between host and pathogen such repetitive proteins may be virulence factors involved in immune evasion or cytoadherence. They find immunological applications in serodiagnostics and vaccine development. Here we use proteins which contain perfect repeats as a basis for comparative genomics between parasitic and free-living organisms. RESULTS: We have developed Reptile http://reptile.unibe.ch, a program for proteome-wide probabilistic description of perfect repeats in proteins. Parasite proteomes exhibited a large variance regarding the proportion of repeat-containing proteins. Interestingly, there was a good correlation between the percentage of highly repetitive proteins and mean protein length in parasite proteomes, but not at all in the proteomes of free-living eukaryotes. Reptile combined with programs for the prediction of transmembrane domains and GPI-anchoring resulted in an effective tool for in silico identification of potential surface antigens and virulence factors from parasites. CONCLUSION: Systemic surveys for perfect amino acid repeats allowed basic comparisons between free-living and parasitic organisms that were directly applicable to predict proteins of serological and parasitological importance. An on-line tool is available at http://genomics.unibe.ch/dora.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intravenous immunoglobulin (IVIg) preparations are derived from pooled plasma from up to 60,000 healthy human donors and reflect the immunologic experience of the donor population. IVIg contains monomeric and dimeric IgG populations which are in a dynamic equilibrium depending on concentration, pH, temperature, donor pool size, time and stabilizers added in order to keep the portion of dimeric IgG below a certain level. In the present study, monomeric and dimeric fractions were isolated by size exclusion chromatography. The dimeric fractions, however, showed a dynamic instability and tended to dissociate. Both dimeric and monomeric IgG fractions were acid treated (pH 4) in order to dissociate the dimeric IgG. Western-blot analysis identified a sub-population of SDS resistant IgG dimers. Furthermore, the reactivities of the fractions were tested against a panel of self- and exo-antigens. There was a marked increase in activity of the dimeric compared to the monomeric IgG fraction against various intracellular self-antigens. Our data indicates that the increased reactivities of pH 4-treated fractions can mainly be attributed to dimer dissociation, as pH 4-treated monomers do not show significantly increased activities against a range of antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the several possible causes of irritable bowel syndrome (IBS) is thought to be low-grade mucosal inflammation. Flagellin, the primary structural component of bacterial flagellae, was shown in inflammatory bowel disease patients to activate the innate and adaptive immunity. It has not yet been conclusively established if IBS patients show reactivity to luminal antigens. In 266 patients [112 IBS, 61 Crohn's disease (CD), 50 ulcerative colitis (UC) and 43 healthy controls (HC)], we measured antibodies to flagellin (FAB, types A4-Fla2 and Fla-X), anti-Saccharomyces cerevisiae antibodies (ASCA) (both ELISA), antipancreas antibodies (PAB) and perinuclear antineutrophil cytoplasmatic antibodies (p-ANCA) (both IF). All IBS patients had normal fecal calprotectin (mean 21 microg mL(-1), SD 6.6) and fulfilled the ROME II criteria. Frequencies of antibodies in patients with IBS, CD, UC and HC, respectively, are as follows (in per cent): antibodies against A4-Fla2: 29/48/8/7; antibodies against Fla-X: 26/52/10/7; ASCA: 6/59/0/2; p-ANCA: 0/10/52/0; and PAB: 0/28/0/0. Antibodies against A4-Fla2 and Fla-X were significantly more frequent in IBS patients than in HC (P = 0.004 and P = 0.009). Antibodies to A4-Fla2 and Fla-X were significantly more frequent in IBS patients with antecedent gastroenteritis compared to non-postinfectious IBS patients (P = 0.002 and P = 0.012). In contrast to ASCA, PAB and p-ANCA, antibodies against A4-Fla2 and Fla-X were found significantly more often in IBS patients, particularly in those with postinfectious IBS, compared to HC. This observation supports the concept that immune reactivity to luminal antigens has a putative role in the development of IBS, at least in a subset of patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Excessive uptake of commensal bacterial antigens through a permeable intestinal barrier may influence host responses to specific antigen in a genetically predisposed host. The aim of this study was to investigate whether intestinal barrier dysfunction induced by indomethacin treatment affects the host response to intestinal microbiota in gluten-sensitized HLA-DQ8/HCD4 mice. METHODOLOGY/PRINCIPAL FINDINGS: HLA-DQ8/HCD4 mice were sensitized with gluten, and gavaged with indomethacin plus gluten. Intestinal permeability was assessed by Ussing chamber; epithelial cell (EC) ultra-structure by electron microscopy; RNA expression of genes coding for junctional proteins by Q-real-time PCR; immune response by in-vitro antigen-specific T-cell proliferation and cytokine analysis by cytometric bead array; intestinal microbiota by fluorescence in situ hybridization and analysis of systemic antibodies against intestinal microbiota by surface staining of live bacteria with serum followed by FACS analysis. Indomethacin led to a more pronounced increase in intestinal permeability in gluten-sensitized mice. These changes were accompanied by severe EC damage, decreased E-cadherin RNA level, elevated IFN-gamma in splenocyte culture supernatant, and production of significant IgM antibody against intestinal microbiota. CONCLUSION: Indomethacin potentiates barrier dysfunction and EC injury induced by gluten, affects systemic IFN-gamma production and the host response to intestinal microbiota antigens in HLA-DQ8/HCD4 mice. The results suggest that environmental factors that alter the intestinal barrier may predispose individuals to an increased susceptibility to gluten through a bystander immune activation to intestinal microbiota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The science of blood groups has made giant steps forward during the last decade. Blood-group typing of red blood cells (RBCs) is performed on more than 15 million samples per year in Europe, today much less often for forensic reasons than for clinical purposes such as transfusion and organ transplantation. Specific monoclonal antibodies are used with interpretation on the basis of RBC agglutination patterns, and mass genotyping may well be on its way to becoming a routine procedure. The discovery that most blood group systems, whose antigens are by definition found on RBCs, are also expressed in multiple other tissues has sparked the interest of transplantation medicine in immunohematology beyond the HLA system. The one and only "histo-blood group" (HBG) system that is routinely considered in transplantation medicine is ABO, because ABO antigen-incompatible donor/recipient constellations are preferably avoided. However, other HBG systems may also play a role, thus far underestimated. This paper is an up-to-date analysis of the importance of HBG systems in the alloimmunity of transplantation and autoimmune events, such as hemolytic anemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesion is the first step in the pathogenesis of enterotoxigenic Escherichia coli infections. The genes encoding the most prevalent adhesion factors CFA/I, CS3 and CS6 were cloned into Vibrio cholerae strain CVD 103-HgR and expression of fimbriae was investigated in wildtype and recombinant strains by transmission electron microscopy in conjunction with immunolabelling and negative staining. Negative staining was effective in revealing CFA/I and CS3, but not CS6. Although morphology of fimbriae differed between wildtype and recombinant strains, corresponding surface antigens were recognized by specific antibodies. The present study provides evidence that ETEC-specific fimbriae can adequately be expressed in an attenuated V. cholerae vaccine strain and that immunoelectron microscopy is a critical tool to validate the surface expression of antigens in view of their possible suitability for recombinant vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diarrhoea caused by enterotoxigenic Escherichia coli (ETEC) requires adhesion of microorganisms to enterocytes. Hence, a promising approach to immunoprophylaxis is to elicit antibodies against colonisation factor antigens (CFAs). Genes encoding the most prevalent ETEC-specific surface antigens were cloned into Vibrio cholerae and Salmonella vaccine strains. Expression of surface antigens was assessed by electron-microscopy. Whereas negative staining was effective in revealing CFA/I and CS3, but not CS6, immunolabelling allowed identification of all surface antigens examined. The V. cholerae vaccine strain CVD103 did not express ETEC-specific colonisation factors, whereas CVD103-HgR expressed CS3 only. However, expression of both CFA/I and CS3 was demonstrated in Salmonella Ty21a.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protozoan parasites are one of the major causes of diseases worldwide. The vector transmitted parasites exhibit complex life cycles involving interactions between humans, protozoa, and arthropods. In order to adapt themselves to the changing microenvironments, they have to undergo complex morphological and metabolic changes. These changes can be brought about by expressing a new pool of proteins in the cell or by modifying the existing repertoire of proteins via posttranslational modifications (PTMs). PTMs involve covalent modification and processing of proteins thereby modulating their functions. Some of these changes may involve PTMs of parasite proteins to help the parasite survive within the host and the vector. Out of many PTMs known, three are unique since they occur only on single proteins: ethanolamine phosphoglycerol (EPG) glutamate, hypusine and diphthamide. These modifications occur on eukaryotic elongation factor 1A (eEF1A), eukaryotic initiation factor 5A (eIF5A) and eukaryotic elongation factor 2 (eEF2), respectively. Interestingly, the proteins carrying these unique modifications are all involved in the elongation steps of translation. Here we review these unique PTMs, which are well conserved in protozoan parasites, and discuss their roles in viability and pathogenesis of parasites. Characterization of these modifications and studying their roles in physiology as well as pathogenesis will provide new insights in parasite biology, which may also help in developing new therapeutic interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibitory antibodies directed against coagulation factor VIII (FVIII) can be found in patients with acquired and congenital hemophilia A. Such FVIII-inhibiting antibodies are routinely detected by the functional Bethesda Assay. However, this assay has a low sensitivity and shows a high inter-laboratory variability. Another method to detect antibodies recognizing FVIII is ELISA, but this test does not allow the distinction between inhibitory and non-inhibitory antibodies. Therefore, we aimed at replacing the intricate antigen FVIII by Designed Ankyrin Repeat Proteins (DARPins) mimicking the epitopes of FVIII inhibitors. As a model we used the well-described inhibitory human monoclonal anti-FVIII antibody, Bo2C11, for the selection on DARPin libraries. Two DARPins were selected binding to the antigen-binding site of Bo2C11, which mimic thus a functional epitope on FVIII. These DARPins inhibited the binding of the antibody to its antigen and restored FVIII activity as determined in the Bethesda assay. Furthermore, the specific DARPins were able to recognize the target antibody in human plasma and could therefore be used to test for the presence of Bo2C11-like antibodies in a large set of hemophilia A patients. These data suggest, that our approach might be used to isolate epitopes from different sets of anti-FVIII antibodies in order to develop an ELISA-based screening assay allowing the distinction of inhibitory and non-inhibitory anti-FVIII antibodies according to their antibody signatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aeromonas salmonicida subsp. salmonicida is the etiologic agent of furunculosis, a frequent and significant disease of fisheries worldwide. The disease is largely controlled by commercial oil adjuvanted vaccines containing bacterins. However, the mechanisms leading to a protective immune response remain poorly understood. The type-three secretion system (T3SS) plays a central role in virulence of A. salmonicida subsp. salmonicida and thus may have an influence on the immune response of the host. The aim of this study was to evaluate the role of the T3SS antigens in mounting a protective immune response against furunculosis. Rainbow trout were intraperitoneally vaccinated in two independent experiments with bacterins prepared from a wild-type A. salmonicida strain and an isogenic strain carrying a deletion in the T3SS (ΔascV). Fish were challenged with the wt strain eight weeks after vaccination. In both trials, the survival rate of trout vaccinated with the ΔascV strain was significantly higher (23-28%) in comparison to the group vaccinated with the wt strain. High-throughput proteomics analysis of whole bacteria showed the ascV deletion in the mutant strain resulted in lower expression of all the components of the T3SS, several of which have a potential immunosuppressive activity. In a third experiment, fish were vaccinated with recombinant AcrV (homologous to the protective antigen LcrV of Yersinia) or S-layer protein VapA (control). AcrV vaccinated fish were not protected against a challenge while fish vaccinated with VapA were partially protected. The presence of T3SS proteins in the vaccine preparations decreased the level of protection against A. salmonicida infection and that AcrV was not a protective antigen. These results challenge the hypothesis that mounting specific antibodies against T3SS proteins should bring better protection to fish and demonstrate that further investigations are needed to better understand the mechanisms underlying effective immune responses against A. salmonicida infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen of fisheries worldwide. Despite the identification of several virulence factors the pathogenesis is still poorly understood. We have used high-throughput proteomics to display the differences between in vitro secretome of A. salmonicida wild-type (wt, hypervirulent, JF5054) and T3SS-deficient (isogenic ΔascV, extremely low-virulent, JF2747) strains in exponential (GP) and stationary (SP) phases of growth. RESULTS Among the different experimental conditions we obtained semi-quantitative values for a total of 2136 A. salmonicida proteins. Proteins of specific A. salmonicida species were proportionally less detected than proteins common to the Aeromonas genus or those shared with other Aeromonas species, suggesting that in vitro growth did not induce the expression of these genes. Four detected proteins which are unidentified in the genome of reference strains of A. salmonicida were homologous to components of the conjugative T4SS of A. hydrophila pRA1 plasmid. Polypeptides of three proteins which are specific to the 01-B526 strain were also discovered. In supernatants (SNs), the number of detected proteins was higher in SP (326 for wt vs 329 for mutant) than in GP (275 for wt vs 263 for mutant). In pellets, the number of identified proteins (a total of 1536) was approximately the same between GP and SP. Numerous highly conserved cytoplasmic proteins were present in A. salmonicida SNs (mainly EF-Tu, EF-G, EF-P, EF-Ts, TypA, AlaS, ribosomal proteins, HtpG, DnaK, peptidyl-prolyl cis-trans isomerases, GAPDH, Enolase, FbaA, TpiA, Pgk, TktA, AckA, AcnB, Mdh, AhpC, Tpx, SodB and PNPase), and several evidences support the theory that their extracellular localization was not the result of cell lysis. According to the Cluster of Orthologous Groups classification, 29% of excreted proteins in A. salmonicida SNs were currently poorly characterized. CONCLUSIONS In this part of our work we elucidated the whole in vitro exoproteome of hypervirulent A. salmonicida subsp. salmonicida and showed the secretion of several highly conserved cytoplasmic proteins with putative moonlighting functions and roles in virulence. All together, our results offer new information about the pathogenesis of furunculosis and point out potential candidates for vaccine development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) in horses represents an immunoglobulin E (IgE)-mediated hypersensitivity to salivary antigens from biting midges (Culicoides spp.). The aim of this study was to evaluate and compare the performances of IgE ELISAs using recombinant Culicoides spp. Obsoletus group salivary gland antigens or crude whole body extracts ('ObsWBE'), C. nubeculosus recombinant proteins (Culn1, 3, 4, 5, 7, 8 and 10) and Obsoletus group recombinant proteins (Culo1 and 2). IgE levels were measured in plasma of 343 Warmblood horses classified as IBH-affected (n=167) and IBH-unaffected (n=176) according to the owners' descriptions. IBH-affected horses were subdivided based on the severity of their clinical signs at sampling and whether or not their IBH history was considered to be classical. The accuracies of the tests increased when clinical signs at sampling were more pronounced or when the IBH history could be considered as classical. A combination of IgE levels against the three best performing Culicoides spp. recombinant proteins (Culn4, Culo1 and Culo2) and ObsWBE resulted in the best performing test. When IBH-affected horses showing a classical history of the disease and severe clinical signs were compared with IBH-unaffected horses, the Youden's index at the optimal cut-off for the three tests in combination was 0.67. This optimal cut-off had a sensitivity of 70%, a specificity of 97% and a total accuracy of 92%. The performance of the IgE ELISA was affected by the severity of IBH clinical signs at sampling and was improved when IgE levels against several recombinant proteins were combined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thiazolide nitazoxanide (2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide; NTZ) is composed of a nitrothiazole- ring and a salicylic acid moiety, which are linked together through an amide bond. NTZ exhibits a broad spectrum of activities against a wide range of helminths, protozoa, enteric bacteria, and viruses infecting animals and humans. Since the first synthesis of the drug, a number of derivatives of NTZ have been produced, which are collectively named thiazolides. These are modified versions of NTZ, which include the replacement of the nitro group with bromo-, chloro-, or other functional groups, and the differential positioning of methyl- and methoxy-groups on the salicylate ring. The presence of a nitro group seems to be the prerequisite for activities against anaerobic or microaerophilic parasites and bacteria. Intracellular parasites and viruses, however, are susceptible to non-nitro-thiazolides with equal or higher effectiveness. Moreover, nitro- and bromo-thiazolides are effective against proliferating mammalian cells. Biochemical and genetic approaches have allowed the identification of respective targets and the molecular basis of resistance formation. Collectively, these studies strongly suggest that NTZ and other thiazolides exhibit multiple mechanisms of action. In microaerophilic bacteria and parasites, the reduction of the nitro group into a toxic intermediate turns out to be the key factor. In proliferating mammalian cells, however, bromo- and nitro-thiazolides trigger apoptosis, which may also explain their activities against intracellular pathogens. The mode of action against helminths may be similar to mammalian cells but has still not been elucidated.