19 resultados para Antidepressant Advertsing


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Recently, Cipriani and colleagues examined the relative efficacy of 12 new-generation antidepressants on major depression using network meta-analytic methods. They found that some of these medications outperformed others in patient response to treatment. However, several methodological criticisms have been raised about network meta-analysis and Cipriani’s analysis in particular which creates the concern that the stated superiority of some antidepressants relative to others may be unwarranted. Materials and Methods: A Monte Carlo simulation was conducted which involved replicating Cipriani’s network metaanalysis under the null hypothesis (i.e., no true differences between antidepressants). The following simulation strategy was implemented: (1) 1000 simulations were generated under the null hypothesis (i.e., under the assumption that there were no differences among the 12 antidepressants), (2) each of the 1000 simulations were network meta-analyzed, and (3) the total number of false positive results from the network meta-analyses were calculated. Findings: Greater than 7 times out of 10, the network meta-analysis resulted in one or more comparisons that indicated the superiority of at least one antidepressant when no such true differences among them existed. Interpretation: Based on our simulation study, the results indicated that under identical conditions to those of the 117 RCTs with 236 treatment arms contained in Cipriani et al.’s meta-analysis, one or more false claims about the relative efficacy of antidepressants will be made over 70% of the time. As others have shown as well, there is little evidence in these trials that any antidepressant is more effective than another. The tendency of network meta-analyses to generate false positive results should be considered when conducting multiple comparison analyses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Despite immense efforts into development of new antidepressant drugs, the increases of serotoninergic and catechominergic neurotransmission have remained the two major pharmacodynamic principles of current drug treatments for depression. Consequently, psychopathological or biological markers that predict response to drugs that selectively increase serotonin and/or catecholamine neurotransmission hold the potential to optimize the prescriber’s selection among currently available treatment options. The aim of this study was to elucidate the differential symptomatology and neurophysiology in response to reductions in serotonergic versus catecholaminergic neurotransmission in subjects at high risk of depression recurrence. Methods: Using identical neuroimaging procedures with [18F] fluorodeoxyglucose positron emission tomography after tryptophan depletion (TD) and catecholamine depletion (CD), subjects with remitted depression were compared to healthy controls in a double-blind, randomized, crossover design. Results: While TD induced significantly more depressed mood, sadness and hopelessness than CD, CD induced more inactivity, concentration difficulties, lassitude and somatic anxiety than TD. CD specifically increased glucose metabolism in the bilateral ventral striatum and decreased glucose metabolism in the bilateral orbitofrontal cortex, whereas TD specifically increased metabolism in the right prefrontal cortex and the posterior cingulate cortex (PCC). While we found direct associations between changes in brain metabolism and induced depressive symptoms following CD, the relationship between neural activity and symptoms was less clear after TD. Conclusions: In conclusion, this study showed that serotonin and catecholamines play common and differential roles in the pathophysiology of depression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite immense efforts into development of new antidepressant drugs, the increases of serotoninergic and catecholaminergic neurotransmission have remained the two major pharmacodynamic principles of current drug treatments for depression. Consequently, psychopathological or biological markers that predict response to drugs that selectively increase serotonin and/or catecholamine neurotransmission hold the potential to optimize the prescriber's selection among currently available treatment options. The aim of this study was to elucidate the differential symptomatology and neurophysiology in response to reductions in serotonergic versus catecholaminergic neurotransmission in subjects at high risk of depression recurrence. Using identical neuroimaging procedures with [(18)F] fluorodeoxyglucose positron emission tomography after tryptophan depletion (TD) and catecholamine depletion (CD), subjects with remitted depression were compared with healthy controls in a double-blind, randomized, crossover design. Although TD induced significantly more depressed mood, sadness and hopelessness than CD, CD induced more inactivity, concentration difficulties, lassitude and somatic anxiety than TD. CD specifically increased glucose metabolism in the bilateral ventral striatum and decreased glucose metabolism in the bilateral orbitofrontal cortex, whereas TD specifically increased metabolism in the right prefrontal cortex and the posterior cingulate cortex. Although we found direct associations between changes in brain metabolism and induced depressive symptoms following CD, the relationship between neural activity and symptoms was less clear after TD. In conclusion, this study showed that serotonin and catecholamines have common and differential roles in the pathophysiology of depression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major depression is a common, recurrent mental illness that affects millions of people worldwide. Recently, a unique fast neuroprotective and antidepressant treatment effect has been observed by ketamine, which acts via the glutamatergic system. Hence, a steady accumulation of evidence supporting a role for the excitatory amino acid neurotransmitter (EAA) glutamate in the treatment of depression has been observed in the last years. Emerging evidence indicates that N-methyl-D-aspartate (NMDA), group 1 metabotropic glutamate receptor antagonists and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) agonists have antidepressant properties. Indeed, treatment with NMDA receptor antagonists has shown the ability to sprout new synaptic connections and reverse stress-induced neuronal changes. Based on glutamatergic signaling, a number of therapeutic drugs might gain interest in the future. Several compounds such as ketamine, memantine, amantadine, tianeptine, pioglitazone, riluzole, lamotrigine, AZD6765, magnesium, zinc, guanosine, adenosine aniracetam, traxoprodil (CP-101,606), MK-0657, GLYX-13, NRX-1047, Ro25-6981, LY392098, LY341495, D-cycloserine, D-serine, dextromethorphan, sarcosine, scopolamine, pomaglumetad methionil, LY2140023, LY404039, MGS0039, MPEP, 1-aminocyclopropanecarboxylic acid, all of which target this system, have already been brought up, some of them recently. Drugs targeting the glutamatergic system might open up a promising new territory for the development of drugs to meet the needs of patients with major depression.