41 resultados para Anterior temporal lobe


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Focal onset epilepsies most often occur in the temporal lobes. To improve diagnosis and therapy of patients suffering from pharmacoresistant temporal lobe epilepsy it is highly important to better understand the underlying functional and structural networks. In mesial temporal lobe epilepsy (MTLE) widespread functional networks are involved in seizure generation and propagation. In this study we have analyzed the spatial distribution of hemodynamic correlates (HC) to interictal epileptiform discharges on simultaneous EEG/fMRI recordings and relative grey matter volume (rGMV) reductions in 10 patients with MTLE. HC occurred beyond the seizure onset zone in the hippocampus, in the ipsilateral insular/operculum, temporo-polar and lateral neocortex, cerebellum, along the central sulcus and bilaterally in the cingulate gyrus. rGMV reductions were detected in the middle temporal gyrus, inferior temporal gyrus and uncus to the hippocampus, the insula, the posterior cingulate and the anterior lobe of the cerebellum. Overlaps between HC and decreased rGMV were detected along the mesolimbic network ipsilateral to the seizure onset zone. We conclude that interictal epileptic activity in MTLE induces widespread metabolic changes in functional networks involved in MTLE seizure activity. These functional networks are spatially overlapping with areas that show a reduction in relative grey matter volumes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The neuropsychological results of temporal lobe epilepsy surgery are well reported in the literature. The aim of this study was to analyse the neuropsychological outcome in a consecutive series of patients with extra-temporal epilepsy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Formal thought disorder (FTD) is one of the main symptoms of schizophrenia. To date there are no whole brain volumetric studies investigating gray matter (GM) differences specifically associated with FTD. Here, we studied 20 right-handed schizophrenia patients that differed in the severity of formal thought disorder and 20 matched healthy controls, using voxel-based morphometry (VBM). The severity of FTD was measured with the Scale for the Assessment of Thought, Language, and Communication. The severity was negatively correlated with the GM volume of the left superior temporal sulcus, the left temporal pole, the right middle orbital gyrus and the right cuneus/lingual gyrus. Structural abnormalities specific for FTD were found to be unrelated to GM differences associated with schizophrenia in general. The specific GM abnormalities within the left temporal lobe may help to explain language disturbances included in FTD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe a 61-year-old patient with clinical evidence of limbic encephalitis who improved with anticonvulsant treatment only, that is, without the use of immunosuppressive agents. Three years following occurrence of anosmia, increasing memory deficits, and emotional disturbances, he presented with new-onset temporal lobe epilepsy, with antibodies binding to neuronal voltage-gated potassium channels and bitemporal hypometabolism on FDG-PET scan; the MRI scan was normal. This is most likely a case of spontaneous remission, illustrating that immunosuppressive therapy might be suspended in milder courses of limbic encephalitis. It remains open whether treatment with anticonvulsant drugs played an additional beneficiary role through the direct suppression of seizures or, additionally, through indirect immunomodulatory side effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Default Mode Network (DMN) is a higher order functional neural network that displays activation during passive rest and deactivation during many types of cognitive tasks. Accordingly, the DMN is viewed to represent the neural correlate of internally-generated self-referential cognition. This hypothesis implies that the DMN requires the involvement of cognitive processes, like declarative memory. The present study thus examines the spatial and functional convergence of the DMN and the semantic memory system. Using an active block-design functional Magnetic Resonance Imaging (fMRI) paradigm and Independent Component Analysis (ICA), we trace the DMN and fMRI signal changes evoked by semantic, phonological and perceptual decision tasks upon visually-presented words. Our findings show less deactivation during semantic compared to the two non-semantic tasks for the entire DMN unit and within left-hemispheric DMN regions, i.e., the dorsal medial prefrontal cortex, the anterior cingulate cortex, the retrosplenial cortex, the angular gyrus, the middle temporal gyrus and the anterior temporal region, as well as the right cerebellum. These results demonstrate that well-known semantic regions are spatially and functionally involved in the DMN. The present study further supports the hypothesis of the DMN as an internal mentation system that involves declarative memory functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Auditory hallucinations (AH) occur in various neurological and psychiatric disorders. In psychosis, increased neuronal activity in the primary auditory cortex (PAC) contributes to AH. We investigated functional neuroanatomy of epileptic hallucinations by measuring cerebral perfusion in three patients with AH during simple partial status epilepticus. Hyperperfusion in the temporal lobe covering the PAC occurred in all patients. Our perfusion data support the hypothesis of PAC being a constituting element in the genesis of AH independent of their aetiology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Synapses of hippocampal neurons play important roles in learning and memory processes and are involved in aberrant hippocampal function in temporal lobe epilepsy. Major neuronal types in the hippocampus as well as their input and output synapses are well known, but it has remained an open question to what extent conventional electron microscopy (EM) has provided us with the real appearance of synaptic fine structure under in vivo conditions. There is reason to assume that conventional aldehyde fixation and dehydration lead to protein denaturation and tissue shrinkage, likely associated with the occurrence of artifacts. However, realistic fine-structural data of synapses are required for our understanding of the transmission process and for its simulation. Here, we used high-pressure freezing and cryosubstitution of hippocampal tissue that was not subjected to aldehyde fixation and dehydration in ethanol to monitor the fine structure of an identified synapse in the hippocampal CA3 region, that is, the synapse between granule cell axons, the mossy fibers, and the proximal dendrites of CA3 pyramidal neurons. Our results showed that high-pressure freezing nicely preserved ultrastructural detail of this particular synapse and allowed us to study rapid structural changes associated with synaptic plasticity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deep brain stimulation (DBS) of different nuclei is being evaluated as a treatment for epilepsy. While encouraging results have been reported, the effects of changes in stimulation parameters have been poorly studied. Here the effects of changes of pulse waveform in high frequency DBS (130 Hz) of the amygdala-hippocampal complex (AH) are presented. These effects were studied on interictal epileptic discharge rates (IEDRs). AH-DBS was implemented with biphasic versus pseudo monophasic charge balanced pulses, in two groups of patients: six with temporal lobe epilepsy (TLE) associated with hippocampal sclerosis (HS) and six with non lesional (NLES) temporal epilepsy. In patients with HS, IEDRs were significantly reduced with AH-DBS applied with biphasic pulses in comparison with monophasic pulse. IEDRs were significantly reduced in only two patients with NLES independently to stimulus waveform. Comparison to long-term seizure outcome suggests that IEDRs could be used as a neurophysiological marker of chronic AH-DBS and they suggest that the waveform of the electrical stimuli can play a major role in DBS. We concluded that biphasic stimuli are more efficient than pseudo monophasic pulses in AH-DBS in patients with HS. In patients with NLES epilepsy, other parameters relevant for efficacy of DBS remain to be determined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Allelic variants of the human P-glycoprotein encoding gene MDR1 (ABCB1) are discussed to be associated with different clinical conditions including pharmacoresistance of epilepsy. However, conflicting data have been reported with regard to the functional relevance of MDR1 allelic variants for the response to antiepileptic drugs. To our knowledge, it is not known whether functionally relevant genetic polymorphisms also occur in the two genes (Mdr1a/Abcb1a, Mdr1b/Abcb1b) coding for P-glycoprotein in the brain of rodents. Therefore, we have started to search for polymorphisms in the Mdr1a gene, which governs the expression of P-glycoprotein in brain capillary endothelial cells in rats. In the kindling model of temporal lobe epilepsy, subgroups of phenytoin-sensitive and phenytoin-resistant rats were selected in repeated drug trials. Sequencing of the Mdr1a gene coding sequence in the subgroups revealed no general differences between drug-resistant and drug-sensitive rats of the Wistar outbred strain. A comparison between different inbred and outbred rat strains also gave no evidence for polymorphisms in the Mdr1a coding sequence. However, in exon-flanking intron sequences, four genetic variants were identified by comparison between these rats strains. In conclusion, the finding that Wistar rats vary in their response to phenytoin, while having the same genetic background, argues against a major impact of Mdr1a genetics on pharmacosensitivity to antiepileptic drugs in the amygdala kindling model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The descriptive term papillary glioneuronal tumor (PGNT) has been repeatedly applied to a morphologic subset of low-grade mixed glial-neuronal neoplasia of juvenile and young adult patients. We report on a 13-year-old boy with PGNT of the left temporal lobe, who presented with headaches and a single generalized seizure. On magnetic resonance imaging, tumor was seen as a large, moderately enhancing paraventricular mass with cyst-mural nodule configuration and slight midline shift. Perifocal edema was virtually absent. Gross total resection could be performed, followed by an uneventful recovery. Histologically, the tumor exhibited similar, if not identical, features as reported previously. These comprised a patterned biphasic mixture of sheets of synaptophysin-expressing small round cells and pseudorosettes of GFAP-positive rudimentary astrocytes along vascular cores. Focally, the latter imprinted a pseudopapillary aspect on this otherwise solid lesion. Both cellular components expressed non-polysialylated neural cell adhesion molecule (NCAM)-L species, and several overlapping areas of synaptophysin and GFAP immunoreactivity were present. The mean MIB-1 labeling index remained below 1%. Signs of anaplasia, in particular mitotic figures, endothelial proliferation, or necrosis were consistently lacking. We perceive PGNT as a clinically and morphologically well-delineated subgroup of extraventricular neurocytic neoplasia, whose paradigmatic presentation may allow for consideration as an entity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous work has reported that in the Iowa gambling task (IGT) advantageous decisions may be taken before the advantageous strategy is known [Bechara, A., Damasio, H., Tranel, D., ; Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293-1295]. In order to test whether explicit memory is essential for the acquisition of a behavioural preference for advantageous choices, we measured behavioural performance and skin conductance responses (SCRs) in five patients with dense amnesia following damage to the basal forebrain and orbitofrontal cortex, six amnesic patients with damage to the medial temporal lobe or the diencephalon, and eight control subjects performing the IGT. Across 100 trials healthy participants acquired a preference for advantageous choices and generated large SCRs to high levels of punishment. In addition, their anticipatory SCRs to disadvantageous choices were larger than to advantageous choices. However, this dissociation occurred much later than the behavioural preference for advantageous alternatives. In contrast, though exhibiting discriminatory autonomic SCRs to different levels of punishment, 9 of 11 amnesic patients performed at chance and did not show differential anticipatory SCRs to advantageous and disadvantageous choices. Further, the magnitude of anticipatory SCRs did not correlate with behavioural performance. These results suggest that the acquisition of a behavioural preference--be it for advantageous or disadvantageous choices--depends on the memory of previous reinforcements encountered in the task, a capacity requiring intact explicit memory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Novel magnetic resonance imaging sequences have and still continue to play an increasing role in neuroimaging and neuroscience. Among these techniques, diffusion-weighted imaging (DWI) has revolutionized the diagnosis and management of diseases such as stroke, neoplastic disease and inflammation. However, the effects of aging on diffusion are yet to be determined. To establish reference values for future experimental mouse studies we tested the hypothesis that absolute apparent diffusion coefficients (ADC) of the normal brain change with age. A total of 41 healthy mice were examined by T2-weighted imaging and DWI. For each animal ADC frequency histograms (i) of the whole brain were calculated on a voxel-by-voxel basis and region-of-interest (ROI) measurements (ii) performed and related to the animals' age. The mean entire brain ADC of mice <3 months was 0.715(+/-0.016) x 10(-3) mm2/s, no significant difference to mice aged 4 to 5 months (0.736(+/-0.040) x 10(-3) mm2/s) or animals older than 9 months 0.736(+/-0.020) x 10(-3) mm2/s. Mean whole brain ADCs showed a trend towards lower values with aging but both methods (i + ii) did not reveal a significant correlation with age. ROI measurements in predefined areas: 0.723(+/-0.057) x 10(-3) mm2/s in the parietal lobe, 0.659(+/-0.037) x 10(-3) mm2/s in the striatum and 0.679(+/-0.056) x 10(-3) mm2/s in the temporal lobe. With advancing age, we observed minimal diffusion changes in the whole mouse brain as well as in three ROIs by determination of ADCs. According to our data ADCs remain nearly constant during the aging process of the brain with a small but statistically non-significant trend towards a decreased diffusion in older animals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of semantic memory in patients with Alzheimer's disease (AD) has raised important questions about the representation of conceptual knowledge in the human brain. It is still unknown whether semantic memory impairments are caused by localized damage to specialized regions or by diffuse damage to distributed representations within nonspecialized brain areas. To our knowledge, there have been no direct correlations of neuroimaging of in vivo brain function in AD with performance on tasks differentially addressing visual and functional knowledge of living and nonliving concepts. We used a semantic verification task and resting 18-fluorodeoxyglucose positron emission tomography in a group of mild to moderate AD patients to investigate this issue. The four task conditions required semantic knowledge of (1) visual, (2) functional properties of living objects, and (3) visual or (4) functional properties of nonliving objects. Visual property verification of living objects was significantly correlated with left posterior fusiform gyrus metabolism (Brodmann's area [BA] 37/19). Effects of visual and functional property verification for non-living objects largely overlapped in the left anterior temporal (BA 38/20) and bilateral premotor areas (BA 6), with the visual condition extending more into left lateral precentral areas. There were no associations with functional property verification for living concepts. Our results provide strong support for anatomically separable representations of living and nonliving concepts, as well as visual feature knowledge of living objects, and against distributed accounts of semantic memory that view visual and functional features of living and nonliving objects as distributed across a common set of brain areas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using functional magnetic resonance imaging during a verbal memory task, we investigated correlations of signal fluctuations within the hippocampus and ipsilateral frontal as well as temporal areas in temporal lobe epilepsy patients. Declarative memory abilities were additionally examined before and after temporal lobe epilepsy surgery. A significant difference exists in functional connectivity between patients whose mnemonic functions deteriorated and those who remained stable or improved. Univariate analyses showed significantly higher preoperative coupling between the hippocampus and Brodmann area 22 for the group that decreased in verbal learning. We suggest greater coupling to reflect higher functional network integrity. Postoperatively reduced learning ability in patients with higher preoperative coupling underlines the importance of hippocampal interaction with cortical areas for successful memory formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Little is known about the genes and proteins involved in the process of human memory. To identify genetic factors related to human episodic memory performance, we conducted an ultra-high-density genome-wide screen at > 500 000 single nucleotide polymorphisms (SNPs) in a sample of normal young adults stratified for performance on an episodic recall memory test. Analysis of this data identified SNPs within the calmodulin-binding transcription activator 1 (CAMTA1) gene that were significantly associated with memory performance. A follow up study, focused on the CAMTA1 locus in an independent cohort consisting of cognitively normal young adults, singled out SNP rs4908449 with a P-value of 0.0002 as the most significant associated SNP in the region. These validated genetic findings were further supported by the identification of CAMTA1 transcript enrichment in memory-related human brain regions and through a functional magnetic resonance imaging experiment on individuals matched for memory performance that identified CAMTA1 allele-specific upregulation of medial temporal lobe brain activity in those individuals harboring the 'at-risk' allele for poorer memory performance. The CAMTA1 locus encodes a purported transcription factor that interfaces with the calcium-calmodulin system of the cell to alter gene expression patterns. Our validated genomic and functional biological findings described herein suggest a role for CAMTA1 in human episodic memory.