52 resultados para Ant allergy
Resumo:
Diagnostic tests in patients with Hymenoptera venom allergy are frequently positive to venoms of both honey bee and wasp (Vespula). Component-resolved analysis with recombinant species-specific major allergens (rSSMA) may help to distinguish true double sensitization from crossreactivity.
Resumo:
House dust mites can be found all over the world where human beings live independent from the climate. Proteins from the gastrointestinal tract- almost all known as enzymes - are the allergens which induce chronic allergic diseases. The inhalation of small amounts of allergens on a regular base all night leads to a slow beginning of the disease with chronically stuffed nose and an exercise induced asthma which later on persists. House dust mites grow well in a humid climate - this can be in well isolated dwellings or in the tropical climate - and nourish from human skin dander. Scales are found in mattresses, upholstered furniture and carpets. The clinical picture with slowly aggravating complaints leads quite often to a delayed diagnosis, which is accidently done on the occasion of a wider spectrum of allergy skin testing. The beginning of a medical therapy with topical steroids as nasal spray or inhalation leads to a fast relief of the complaints. Although discussed in extensive controversies in the literature - at least in Switzerland with the cold winter and dry climate - the recommendation of house dust mite avoidance measures is given to patients with good clinical results. The frequent ventilation of the dwelling with cold air in winter time cause a lower indoor humidity. Covering encasings on mattresses, pillow, and duvets reduces the possibility of chronic contact with mite allergens as well as the weekly changing the bed linen. Another option of therapy is the specific immunotherapy with extracts of house dust mites showing good results in children and adults. Using recombinant allergens will show a better quality in diagnostic as well as in therapeutic specific immunotherapy.
Resumo:
Allergist/clinical immunologist maintenance of certification and training program reaccreditation are mandatory in some countries. The World Allergy Organization conducted surveys in 2009 and 2011 to assess where such programs were available and to promote the establishment of such programs on a global level. This was done with the presumption that after such an "inventory," World Allergy Organization could offer guidance to its Member Societies on the promotion of such programs to assure the highest standards of practice in the field of allergy and clinical immunology. This review draws on the experience of countries where successful programs are in place and makes recommendations for those wishing to implement such programs for the specialty.
Resumo:
BACKGROUND: Flea allergy dermatitis (FAD) is a common skin disease in dogs and can be induced experimentally. It often coexists with other allergic conditions. So far no studies have investigated the quantitative production of cytokine mRNA in skin biopsies and peripheral blood mononuclear cells (PBMC) in flea allergic dogs. OBJECTIVE: The aim of our study was to improve the understanding of the immunopathogenesis of allergic dermatitis as a response to fleabites. MATERIAL AND METHODS: Allergic and non-allergic dogs were exposed to fleas. Before and after 4 days of flea exposure mRNA was isolated from biopsies and PBMC. Production of chymase, tryptase, IL-4, IL-5, IL-13, TNF-alpha and IFN-gamma mRNA was measured by real-time RT-PCR. The inflammatory infiltrate in the skin was scored semi-quantitatively. The number of eosinophils, mast cells (MC) and IgE+ cells/mm2 was evaluated to complete the picture. RESULTS: FAD was associated with a higher number of MC before flea exposure and with a significant increase of eosinophils after flea exposure as compared to non-allergic dogs. The number of IgE+ cells was higher in allergic dogs before and after flea exposure. In allergic dogs mRNA for most cytokines and proteases tested was higher before flea exposure than after flea exposure. After exposure to fleas an increased mRNA production was only observed in non-allergic dogs. In vitro stimulation with flea antigen resulted in a decreased expression of most cytokines in allergic dogs before flea exposure. In contrast, in PBMC, only increased levels of IL-4 and IL-5 mRNA were observed in allergic dogs before flea exposure. However, after flea exposure and additional stimulation with flea antigen the production of mRNA for all cytokines tested was significantly increased in allergic dogs. CONCLUSION: We demonstrated that the response in biopsies and PBMC is different and that FAD is associated with a TH2 response.
Resumo:
BACKGROUND: Equine insect bite hypersensitivity (IBH) is an immediate-type hypersensitivity reaction provoked by insect-derived allergens. Icelandic horses living in Iceland do not have IBH due to absence of relevant insects, but acquire it at high frequency after being imported to mainland Europe. In contrast, their offspring born in mainland Europe has reduced IBH incidence. T helper 1 (Th1) and Th2 cells and cytokines were determined in Icelandic horses born in Iceland and on the continent and which either have IBH or are healthy. METHODS: Peripheral blood mononuclear cells (PBMC) from these horses were stimulated for 18 h during summer and winter with polyclonal T cell stimuli, IBH allergen(s) or irrelevant allergen(s). Cells were analysed by flow cytometry for interferon-gamma (IFN-gamma) and interleukin-4 (IL-4); RNA was analysed for IFN-gamma, IL-4, IL-5 and IL-13 mRNA. RESULTS: During summer, but not during winter, IBH PBMC stimulated polyclonally showed reduced IFN-gamma mRNA and IFN-gamma-producing cells when compared with those of healthy horses, regardless of origin. PBMC stimulated polyclonally or with IBH allergen showed increased IL-4 mRNA levels and higher numbers of IL-4-producing cells when born in Iceland or showing IBH symptoms. IL-5 and IL-13 mRNA were modulated neither by disease nor by origin. Abrogation of IL-4 production in healthy horses born in mainland Europe may be due, at least in part, to IL-10. There was an increased level of IL-10 in supernatants from PBMC of healthy horses born in mainland Europe and stimulated polyclonally or with IBH allergen. CONCLUSIONS: Modulation of IBH incidence is governed by altered Th1/Th2 ratio, which might be influenced by IL-10.
Resumo:
Lymphocyte stimulation tests (LST) were performed in five dogs sensitised with ovalbumin (OVA) and seven healthy dogs. In addition, all five OVA-sensitised and two control dogs were tested after two in vivo provocations with OVA-containing eye drops. The isolated cells were suspended in culture media containing OVA and were cultured for up to 12 days. Proliferation was measured as reduction in 5,6-carboxylfluorescein diacetate succinimidyl ester (CFSE) intensity by flow cytometry on days 0, 3, 6, 9 and 12. A cell proliferation index (CPI) for each day and the area under the curve (AUC) of the CPI was calculated for each dog. All OVA-sensitised dogs demonstrated increased erythema after conjunctival OVA application. The presence of OVA-specific lymphocytes was demonstrated in 2/5 OVA-sensitised dogs before and 4/5 after in vivo provocation. Using the AUC, the difference between OVA-sensitised and control dogs was significant in all three LST before in vivo provocation (P<0.05) and borderline significant (P=0.053) in 2/3 LST after provocation. The most significant difference in CPI was observed after 9 days of culture (P=0.001). This pilot study indicates that the LST allows detection of rare antigen specific memory T-cells in dogs previously sensitised to, but not concurrently undergoing challenge by a specific antigen.
Resumo:
Nonallergic rhinitis (NAR) can be defined as a chronic nasal inflammation which is not caused by systemic IgE-dependent mechanisms. It is common and probably affects far more than 200 million people worldwide. Both children and adults are affected. However, its exact prevalence is unknown and its phenotypes need to be evaluated using appropriate methods to better understand its pathophysiology, diagnosis and management. It is important to differentiate between infectious rhinitis, allergic/NAR and chronic rhinosinusitis, as management differs for each of these cases. Characterization of the phenotype, mechanisms and management of NAR represents one of the major unmet needs in allergic and nonallergic diseases. Studies on children and adults are required in order to appreciate the prevalence, phenotype, severity and co-morbidities of NAR. These studies should compare allergic and NAR and consider different age group populations including elderly subjects. Mechanistic studies should be carried out to better understand the disease(s) and risk factors and to guide towards an improved diagnosis and therapy. These studies need to take the heterogeneity of NAR into account. It is likely that neuronal mechanisms, T cells, innate immunity and possibly auto-immune responses all play a role in NAR and may also contribute to the symptoms of allergic rhinitis.