89 resultados para Ancient Greece


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors. Glycopeptide dendrimers are being developed for inhibition of pathogen adhesion to host cells, a process mediated by carbohydrate-lectins interactions. Such compounds could be used in the treatment of infections by pathogenic bacteria such as Pseudomonas aeruginosa that can be resistant to known antibiotics. Pseudomonas aeruginosa produces two lectins, the fucose binding LecB and the galactose binding LecA. Both lectins have been shown to be virulence factors, involved in cell adhesion and biofilms formation. Screening combinatorial libraries of fucosylated peptide dendrimers led to the glycopeptide dendrimer (C-Fuc-LysProLeu)4(LysPheLysIle)2 LysHisIleNH2. This dendrimer binds the lectin LecB with submicromolar IC50 and shows potent inhibition of P. aeruginosa biofilms for both the laboratory strain PAO1 and for clinical isolates [1]. Appending the peptide dendrimer portion of FD2 with galactosy endgroups gave galactosylpeptide dendrimers as potent ligands for LecA which also act as biofilm inhibitors. Structure-activity relationship studies demonstrated that multivalency was essential for strong binding and biofilm inhibition. [2]The results open the way to develop therapeutic agents based on glycopeptide dendrimers. Peptide dendrimers with antimicrobial properties and good cell penetration are other applications of dendritic peptides we are now investigating.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Timing divergence events allow us to infer the conditions under which biodiversity has evolved and gain important insights into the mechanisms driving evolution. Cichlid fishes are a model system for studying speciation and adaptive radiation, yet, we have lacked reliable timescales for their evolution. Phylogenetic reconstructions are consistent with cichlid origins prior to Gondwanan landmass fragmentation 121-165 MYA, considerably earlier than the first known fossil cichlids (Eocene). We examined the timing of cichlid evolution using a relaxed molecular clock calibrated with geological estimates for the ages of 1) Gondwanan fragmentation and 2) cichlid fossils. Timescales of cichlid evolution derived from fossil-dated phylogenies of other bony fishes most closely matched those suggested by Gondwanan breakup calibrations, suggesting the Eocene origins and marine dispersal implied by the cichlid fossil record may be due to its incompleteness. Using Gondwanan calibrations, we found accumulation of genetic diversity within the radiating lineages of the African Lakes Malawi, Victoria and Barombi Mbo, and Palaeolake Makgadikgadi began around or after the time of lake basin formation. These calibrations also suggest Lake Tanganyika was colonized independently by the major radiating cichlid tribes that then began to accumulate genetic diversity thereafter. These results contrast with the widely accepted theory that diversification into major lineages took place within the Tanganyika basin. Together, this evidence suggests that ancient lake habitats have played a key role in generating and maintaining diversity within radiating lineages and also that lakes may have captured preexisting cichlid diversity from multiple sources from which adaptive radiations have evolved.