17 resultados para Alpha(1c) Subunit


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Congenital long-QT syndrome (LQTS) is potentially lethal secondary to malignant ventricular arrhythmias and is caused predominantly by mutations in genes that encode cardiac ion channels. Nearly 25% of patients remain without a genetic diagnosis, and genes that encode cardiac channel regulatory proteins represent attractive candidates. Voltage-gated sodium channels have a pore-forming alpha-subunit associated with 1 or more auxiliary beta-subunits. Four different beta-subunits have been described. All are detectable in cardiac tissue, but none have yet been linked to any heritable arrhythmia syndrome. METHODS AND RESULTS We present a case of a 21-month-old Mexican-mestizo female with intermittent 2:1 atrioventricular block and a corrected QT interval of 712 ms. Comprehensive open reading frame/splice mutational analysis of the 9 established LQTS-susceptibility genes proved negative, and complete mutational analysis of the 4 Na(vbeta)-subunits revealed a L179F (C535T) missense mutation in SCN4B that cosegregated properly throughout a 3-generation pedigree and was absent in 800 reference alleles. After this discovery, SCN4B was analyzed in 262 genotype-negative LQTS patients (96% white), but no further mutations were found. L179F was engineered by site-directed mutagenesis and heterologously expressed in HEK293 cells that contained the stably expressed SCN5A-encoded sodium channel alpha-subunit (hNa(V)1.5). Compared with the wild-type, L179F-beta4 caused an 8-fold (compared with SCN5A alone) and 3-fold (compared with SCN5A + WT-beta4) increase in late sodium current consistent with the molecular/electrophysiological phenotype previously shown for LQTS-associated mutations. CONCLUSIONS We provide the seminal report of SCN4B-encoded Na(vbeta)4 as a novel LQT3-susceptibility gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the synthesis and incorporation into alpha-DNA of a novel conformationally constrained alpha-nucleoside analogue. The carbohydrate part of this analogue was prepared in 4 steps from the known bicyclic precursor 1 via a stereospecific, intramolecular, Et 3B mediated radical addition to a keto-function as the key step. The thus obtained intermediate 4 was transformed stereoselectively into the corresponding alpha-nucleoside analogues 7 and 8 containing the bases adenine and thymine, and were further elaborated into the phosphoramidite building blocks 11 and 12 . Both building blocks were incorporated into alpha-oligodeoxynucleotides and their pairing behavior to parallel complementary DNA studied by UV-melting experiments. Single substitutions of alpha-deoxyribnucleoside units by the new analogues in the center of duplexes were found to be thermally destabilizing by only -0.8 to -3.1›C.