23 resultados para Allan, James, d. 1810.
Resumo:
Methods are described for working with Nosema apis and Nosema ceranae in the field and in the laboratory. For fieldwork, different sampling methods are described to determine colony level infections at a given point in time, but also for following the temporal infection dynamics. Suggestions are made for how to standardise field trials for evaluating treatments and disease impact. The laboratory methods described include different means for determining colony level and individual bee infection levels and methods for species determination, including light microscopy, electron microscopy, and molecular methods (PCR). Suggestions are made for how to standardise cage trials, and different inoculation methods for infecting bees are described, including control methods for spore viability. A cell culture system for in vitro rearing of Nosema spp. is described. Finally, how to conduct different types of experiments are described, including infectious dose, dose effects, course of infection and longevity tests
Resumo:
Adult honey bees are maintained in vitro in laboratory cages for a variety of purposes. For example, researchers may wish to perform experiments on honey bees caged individually or in groups to study aspects of parasitology, toxicology, or physiology under highly controlled conditions, or they may cage whole frames to obtain newly emerged workers of known age cohorts. Regardless of purpose, researchers must manage a number of variables, ranging from selection of study subjects (e.g. honey bee subspecies) to experimental environment (e.g. temperature and relative humidity). Although decisions made by researchers may not necessarily jeopardize the scientific rigour of an experiment, they may profoundly affect results, and may make comparisons with similar, but independent, studies difficult. Focusing primarily on workers, we provide recommendations for maintaining adults under in vitro laboratory conditions, whilst acknowledging gaps in our understanding that require further attention. We specifically describe how to properly obtain honey bees, and how to choose appropriate cages, incubator conditions, and food to obtain biologically relevant and comparable experimental results. Additionally, we provide broad recommendations for experimental design and statistical analyses of data that arises from experiments using caged honey bees. The ultimate goal of this, and of all COLOSS BEEBOOK papers, is not to stifle science with restrictions, but rather to provide researchers with the appropriate tools to generate comparable data that will build upon our current understanding of honey bees.
Resumo:
n recent years, declines of honey bee populations have received massive media attention worldwide, yet attempts to understand the causes have been hampered by a lack of standardisation of laboratory techniques. Published as a response to this, the COLOSS BEEBOOK is a unique collaborative venture involving 234 bee scientists from 34 countries, who have produced the definitive guide to how to carry out research on honey bees. It is hoped that these volumes will become the standards to be adopted by bee scientists worldwide. Volume II includes approximately 600 separate protocols dealing with the study of the pests and diseases of the honey bee, Apis mellifera. These cover epidemiology and surveying techniques, virus diseases, bacterial diseases such as European and American foulbrood, fungal and microsporidian diseases such as Nosema, mites such as Acarapis, Varroa and Tropilaelaps, and other pests such as the small hive beetle.
Resumo:
In recent years, declines of honey bee populations have received massive media attention worldwide, yet attempts to understand the causes have been hampered by a lack of standardisation of laboratory techniques. Published as a response to this, the COLOSS BEEBOOK is a unique collaborative venture involving 234 bee scientists from 34 countries, who have produced the definitive guide to how to carry out research on honey bees. It is hoped that these volumes will become the standards to be adopted by bee scientists worldwide. Volume I includes approximately 1,100 separate protocols dealing with the study of the honey bee, Apis mellifera. These cover anatomy, behavioural studies, chemical ecology, breeding, genetics, instrumental insemination and queen rearing, pollination, molecular studies, statistics, toxicology and numerous other techniques
Resumo:
Determining the contribution of wood smoke to air pollution in large cities such as London is becoming increasingly important due to the changing nature of domestic heating in urban areas. During winter, biomass burning emissions have been identified as a major cause of exceedances of European air quality limits. The aim of this work was to quantify the contribution of biomass burning in London to concentrations of PM2:5 and determine whether local emissions or regional contributions were the main source of biomass smoke. To achieve this, a number of biomass burning chemical tracers were analysed at a site within central London and two sites in surrounding rural areas. Concentrations of levoglucosan, elemental carbon (EC), organic carbon (OC) and K+ were generally well correlated across the three sites. At all the sites, biomass burning was found to be a source of OC and EC, with the largest contribution of EC from traffic emissions, while for OC the dominant fraction included contributions from secondary organic aerosols, primary biogenic and cooking sources. Source apportionment of the EC and OC was found to give reasonable estimation of the total carbon from non-fossil and fossil fuel sources based upon comparison with estimates derived from 14C analysis. Aethalometer-derived black carbon data were also apportioned into the contributions frombiomass burning and traffic and showed trends similar to those observed for EC. Mean wood smoke mass at the sites was estimated to range from 0.78 to 1.0 μgm-3 during the campaign in January–February 2012. Measurements on a 160m tower in London suggested a similar ratio of brown to black carbon (reflecting wood burning and traffic respectively) in regional and London air. Peaks in the levoglucosan and K+ concentrations were observed to coincide with low ambient temperature, consistent with domestic heating as a major contributing local source in London. Overall, the source of biomass smoke in London was concluded to be a background regional source overlaid by contributions from local domestic burning emissions. This could have implications when considering future emission control strategies during winter and may be the focus of future work in order to better determine the contributing local sources.
Resumo:
Herein we provide a detailed molecular analysis of the spatial heterogeneity of clinically localized, multifocal prostate cancer to delineate new oncogenes or tumor suppressors. We initially determined the copy number aberration (CNA) profiles of 74 patients with index tumors of Gleason score 7. Of these, 5 patients were subjected to whole-genome sequencing using DNA quantities achievable in diagnostic biopsies, with detailed spatial sampling of 23 distinct tumor regions to assess intraprostatic heterogeneity in focal genomics. Multifocal tumors are highly heterogeneous for single-nucleotide variants (SNVs), CNAs and genomic rearrangements. We identified and validated a new recurrent amplification of MYCL, which is associated with TP53 deletion and unique profiles of DNA damage and transcriptional dysregulation. Moreover, we demonstrate divergent tumor evolution in multifocal cancer and, in some cases, tumors of independent clonal origin. These data represent the first systematic relation of intraprostatic genomic heterogeneity to predicted clinical outcome and inform the development of novel biomarkers that reflect individual prognosis.
Resumo:
Increasing antibiotic resistance among uropathogenic Escherichia coli (UPEC) is driving interest in therapeutic targeting of nonconserved virulence factor (VF) genes. The ability to formulate efficacious combinations of antivirulence agents requires an improved understanding of how UPEC deploy these genes. To identify clinically relevant VF combinations, we applied contemporary network analysis and biclustering algorithms to VF profiles from a large, previously characterized inpatient clinical cohort. These mathematical approaches identified four stereotypical VF combinations with distinctive relationships to antibiotic resistance and patient sex that are independent of traditional phylogenetic grouping. Targeting resistance- or sex-associated VFs based upon these contemporary mathematical approaches may facilitate individualized anti-infective therapies and identify synergistic VF combinations in bacterial pathogens.