101 resultados para Adenosine A(1) receptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucagon-like-peptide-1 (GLP1) analogs may induce thyroid or pancreatic diseases in animals, raising questions about their use in diabetic patients. There is, however, controversy regarding expression of GLP1 receptors (GLP1R) in human normal and diseased thyroid and pancreas. Here, 221 human thyroid and pancreas samples were analyzed for GLP1R immunohistochemistry and compared with quantitative in vitro GLP1R autoradiography. Neither normal nor hyperplastic human thyroids containing parafollicular C cells express GLP1R with either method. Papillary thyroid cancer do not, and medullary thyroid carcinomas rarely express GLP1R. Insulin- and somatostatin-producing cells in the normal pancreas express a high density of GLP1R, whereas acinar cells express them in low amounts. Ductal epithelial cells do not express GLP1R. All benign insulinomas express high densities of GLP1R, whereas malignant insulinomas rarely express them. All ductal pancreatic carcinomas are GLP1R negative, whereas 6/20 PanIN 1/2 and 0/12 PanIN 3 express GLP1R. Therefore, normal thyroid, including normal and hyperplastic C cells, or papillary thyroid cancer are not targets for GLP1 analogs in humans. Conversely, all pancreatic insulin- and somatostatin-producing cells are physiological GLP1 targets, as well as most acini. As normal ductal epithelial cells or PanIN 3 or ductal pancreatic carcinomas do not express GLP1R, it seems unlikely that GLP1R is related to neoplastic transformation in pancreas. GLP1R-positive medullary thyroid carcinomas and all benign insulinomas are candidates for in vivo GLP1R targeting.Modern Pathology advance online publication, 12 September 2014; doi:10.1038/modpathol.2014.113.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the (125)iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer (125)I-GLP-1(7-36)amide. METHODS Receptor autoradiography studies with (125)I-GLP-1(7-36)amide agonist or (125)I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. RESULTS The antagonist (125)I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer (125)I-GLP-1(7-36)amide. For comparison, (125)I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. CONCLUSION The GLP-1 receptor antagonist exendin(9-39) labelled with (125)I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Therapeutic antibodies targeting programmed cell death 1 (PD-1) activate tumor-specific immunity and have shown remarkable efficacy in the treatment of melanoma. Yet, little is known about tumor cell-intrinsic PD-1 pathway effects. Here, we show that murine and human melanomas contain PD-1-expressing cancer subpopulations and demonstrate that melanoma cell-intrinsic PD-1 promotes tumorigenesis, even in mice lacking adaptive immunity. PD-1 inhibition on melanoma cells by RNAi, blocking antibodies, or mutagenesis of melanoma-PD-1 signaling motifs suppresses tumor growth in immunocompetent, immunocompromised, and PD-1-deficient tumor graft recipient mice. Conversely, melanoma-specific PD-1 overexpression enhances tumorigenicity, as does engagement of melanoma-PD-1 by its ligand, PD-L1, whereas melanoma-PD-L1 inhibition or knockout of host-PD-L1 attenuate growth of PD-1-positive melanomas. Mechanistically, the melanoma-PD-1 receptor modulates downstream effectors of mTOR signaling. Our results identify melanoma cell-intrinsic functions of the PD-1:PD-L1 axis in tumor growth and suggest that blocking melanoma-PD-1 might contribute to the striking clinical efficacy of anti-PD-1 therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Insulinomas are rare tumors, in the majority of cases best treated by surgical resection. Preoperative localization of insulinoma is challenging. The more precise the preoperative localization the less invasive and safer is the resection. The purpose of the study is to check the impact of a new technique to localize insulinoma on the surgical strategy. FINDINGS We present exact preoperative localization with Glucagon-like peptide-1 receptor (GLP-1R) imaging. This allows a more precise resection thereby reducing surgical access trauma, loss of healthy pancreatic tissue and increasing safety and quality of the surgical intervention. CONCLUSION With the help of precise preoperative localization of insulinoma with GLP-1R imaging the surgeon is able to minimize the amount of resected healthy pancreatic tissue. We hypothesize that GLP-1R imaging will become a preoperative diagnostic tool to be used for many patients scheduled for open or laparoscopic insulinoma resection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The intervertebral disc (IVD) has limited self-healing potential and disc repair strategies require an appropriate cell source such as progenitor cells that could regenerate the damaged cells and tissues. The objective of this study was to identify nucleus pulposus-derived progenitor cells (NPPC) and examine their potential in regenerative medicine in vitro. METHODS Nucleus pulposus cells (NPC) were obtained from 1-year-old bovine coccygeal discs by enzymatic digestion and were sorted for the angiopoietin-1 receptor Tie2. The obtained Tie2- and Tie2+ fractions of cells were differentiated into osteogenic, adipogenic, and chondrogenic lineages in vitro. Colony-forming units were prepared from both cell populations and the colonies formed were analyzed and quantified after 8 days of culture. In order to improve the preservation of the Tie2+ phenotype of NPPC in monolayer cultures, we tested a selection of growth factors known to have stimulating effects, cocultured NPPC with IVD tissue, and exposed them to hypoxic conditions (2 % O2). RESULTS After 3 weeks of differentiation culture, only the NPC that were positive for Tie2 were able to differentiate into osteocytes, adipocytes, and chondrocytes as characterized by calcium deposition (p < 0.0001), fat droplet formation (p < 0.0001), and glycosaminoglycan content (p = 0.0095 vs. Tie2- NPC), respectively. Sorted Tie2- and Tie2+ subpopulations of cells both formed colonies; however, the colonies formed from Tie2+ cells were spheroid in shape, whereas those from Tie2- cells were spread and fibroblastic. In addition, Tie2+ cells formed more colonies in 3D culture (p = 0.011) than Tie2- cells. During expansion, a fast decline in the fraction of Tie2+ cells was observed (p < 0.0001), which was partially reversed by low oxygen concentration (p = 0.0068) and supplementation of the culture with fibroblast growth factor 2 (FGF2) (p < 0.0001). CONCLUSIONS Our results showed that the bovine nucleus pulposus contains NPPC that are Tie2+. These cells fulfilled formally progenitor criteria that were maintained in subsequent monolayer culture for up to 7 days by addition of FGF2 or hypoxic conditions. We propose that the nucleus pulposus represents a niche of precursor cells for regeneration of the IVD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sphingosine-1-phosphate (S1P) acts as high affinity agonist at specific G-protein-coupled receptors, S1P(1-5), that play important roles e.g. in the cardiovascular and immune systems. A S1P receptor modulating drug, FTY720 (fingolimod), has been effective in phase III clinical trials for multiple sclerosis. FTY720 is a sphingosine analogue and prodrug of FTY720-phosphate, which activates all S1P receptors except S1P(2) and disrupts lymphocyte trafficking by internalizing the S1P(1) receptor. Cis-4-methylsphingosine (cis-4M-Sph) is another synthetic sphingosine analogue that is readily taken up by cells and phosphorylated to cis-4-methylsphingosine-1-phosphate (cis-4M-S1P). Therefore, we analysed whether cis-4M-Sph interacted with S1P receptors through its metabolite cis-4M-S1P in a manner similar to FTY720. Indeed, cis-4M-Sph caused an internalization of S1P receptors, but differed from FTY720 as it acted on S1P(2) and S1P(3) and only weakly on S1P(1), while FTY720 internalized S1P(1) and S1P(3) but not S1P(2). Consequently, pre-incubation with cis-4M-Sph specifically desensitized S1P-induced [Ca(2+)](i) increases, which are mediated by S1P(2) and S1P(3), in a time- and concentration-dependent manner. This effect was not shared by sphingosine or FTY720, indicating that metabolic stability and targeting of S1P(2) receptors were important. The desensitization of S1P-induced [Ca(2+)](i) increases was dependent on the expression of SphKs, predominantly of SphK2, and thus mediated by cis-4M-S1P. In agreement, cis-4M-S1P was detected in the supernatants of cells exposed to cis-4M-Sph. It is concluded that cis-4M-Sph, through its metabolite cis-4M-S1P, acts as a S1P receptor modulator and causes S1P receptor internalization and desensitization. The data furthermore help to define requirements for sphingosine kinase substrates as S1P receptor modulating prodrugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) receptor imaging is superior to somatostatin receptor subtype 2 (sst(2)) imaging in localizing benign insulinomas. Here, the role of GLP-1 and sst(2) receptor imaging in the management of malignant insulinoma patients was investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular basis for heparin-induced thrombocytopenia (HIT), a relatively common complication of heparin therapy, is not yet fully understood. We found that pretreatment of platelets with AR-C66096 (formerly FPL 66096), a specific platelet adenosine diphosphate (ADP) receptor antagonist, at a concentration of 100 to 200 nmol/L that blocked ADP-dependent platelet aggregation, resulted in complete loss of platelet aggregation responses to HIT sera. AR-C66096 also totally inhibited HIT serum-induced dense granule release, as judged by measurement of adenosine triphosphate (ATP) release. Apyrase, added to platelets at a concentration that had only minor effects on thrombin- or arachidonic acid-induced aggregation, also blocked completely HIT serum-induced platelet aggregation. Furthermore, AR-C66096 inhibited platelet aggregation and ATP release induced by cross-linking Fc gamma RIIA with specific antibodies. These data show that released ADP and the platelet ADP receptor play a pivotal role in HIT serum-induced platelet activation/aggregation. The thromboxane receptor inhibitor, Daltroban, had no effect on HIT serum-induced platelet activation whereas GPIIb-IIIa antagonists blocked platelet aggregation but had only a moderate effect on HIT serum-induced dense granule release. Pretreatment of platelets with chondroitinases but not with heparinases resulted in concentration dependent inhibition of HIT serum-induced platelet aggregation. These novel data relating to the mechanism of platelet activation induced by HIT sera suggest that the possibility should be examined that ADP receptor antagonists or compounds that inhibit ADP release may be effective as therapeutic agents for the prevention or treatment of complications associated with heparin therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proposed sst(1) pharmacophore (J. Med. Chem. 2005, 48, 523-533) derived from the NMR structures of a family of mono- and dicyclic undecamers was used to design octa-, hepta-, and hexamers with high affinity and selectivity for the somatostatin sst(1) receptor. These compounds were tested for their in vitro binding properties to all five somatostatin (SRIF) receptors using receptor autoradiography; those with high SRIF receptor subtype 1 (sst(1)) affinity and selectivity were shown to be agonists when tested functionally in a luciferase reporter gene assay. Des-AA(1,4-6,10,12,13)-[DTyr(2),DAgl(NMe,2naphthoyl)(8),IAmp(9)]-SRIF-Thr-NH(2) (25) was radio-iodinated ((125)I-25) and specifically labeled sst(1)-expressing cells and tissues. 3D NMR structures were calculated for des-AA(1,4-6,10,12,13)-[DPhe(2),DTrp(8),IAmp(9)]-SRIF-Thr-NH(2) (16), des-AA(1,2,4-6,10,12,13)-[DAgl(NMe,2naphthoyl)(8),IAmp(9)]-SRIF-Thr-NH(2) (23), and des-AA(1,2,4-6,10,12,13)-[DAgl(NMe,2naphthoyl)(8),IAmp(9),Tyr(11)]-SRIF-NH(2) (27) in DMSO. Though the analogues have the sst(1) pharmacophore residues at the previously determined distances from each other, the positioning of the aromatic residues in 16, 23, and 27 is different from that described earlier, suggesting an induced fit mechanism for sst(1) binding of these novel, less constrained sst(1)-selective family members.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) receptors are highly overexpressed in benign insulinomas, permitting in vivo tumour visualisation with GLP-1 receptor scanning. The present study sought to evaluate the GLP-1 receptor status in vitro in other pancreatic disorders leading to hyperinsulinaemic hypoglycaemia, specifically after gastric bypass surgery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The skin irritant polyyne falcarinol (panaxynol, carotatoxin) is found in carrots, parsley, celery, and in the medicinal plant Panax ginseng. In our ongoing search for new cannabinoid (CB) receptor ligands we have isolated falcarinol from the endemic Sardinian plant Seseli praecox. We show that falcarinol exhibits binding affinity to both human CB receptors but selectively alkylates the anandamide binding site in the CB(1) receptor (K(i)=594nM), acting as covalent inverse agonist in CB(1) receptor-transfected CHO cells. Given the inherent instability of purified falcarinol we repeatedly isolated this compound for biological characterization and one new polyyne was characterized. In human HaCaT keratinocytes falcarinol increased the expression of the pro-allergic chemokines IL-8 and CCL2/MCP-1 in a CB(1) receptor-dependent manner. Moreover, falcarinol inhibited the effects of anandamide on TNF-alpha stimulated keratinocytes. In vivo, falcarinol strongly aggravated histamine-induced oedema reactions in skin prick tests. Both effects were also obtained with the CB(1) receptor inverse agonist rimonabant, thus indicating the potential role of the CB(1) receptor in skin immunopharmacology. Our data suggest anti-allergic effects of anandamide and that falcarinol-associated dermatitis is due to antagonism of the CB(1) receptor in keratinocytes, leading to increased chemokine expression and aggravation of histamine action.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of Gly-neurotensin(8-13) analogues modified at the N-terminus by acyclic tetraamines (Demotensin 1-4) were obtained by solid-phase peptide synthesis techniques. Strategic replacement of amino acids and/or reduction of sensitive peptide bonds were performed to enhance conjugate resistance against proteolytic enzymes. During 99mTc-labeling, single species radiopeptides, [99mTc]Demotensin 1-4, were easily obtained in high yields and typical specific activities of 1 Ci/micromol. Peptide conjugates displayed a high affinity binding to the human neurotensin subtype 1 receptor (NTS1-R) expressed in colon adenocarcinoma HT-29 or WiDr cells and/or in human tumor sections. [99mTc]Demotensin 1-4 internalized very rapidly in HT-29 or WiDr cells by a NTS1-R-mediated process. [99mTc]Demotensin 3 and 4, which remained stable during 1 h incubation in murine plasma, were selectively studied in nude mice bearing human HT-29 and WiDr xenografts. After injection, [99mTc]Demotensin 3 and 4 effectively and specifically localized in the experimental tumors and were rapidly excreted via the kidneys into the urine, exhibiting overall biodistribution patterns favorable for NTS1-R-targeted tumor imaging in man.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: Malignant glial brain tumors consistently overexpress neurokinin type 1 receptors. In classic seed-based brachytherapy, one to several rigid (125)I seeds are inserted, mainly for the treatment of small low-grade gliomas. The complex geometry of rapidly proliferating high-grade gliomas requires a diffusible system targeting tumor-associated surface structures to saturate the tumor, including its margins. EXPERIMENTAL DESIGN: We developed a new targeting vector by conjugating the chelator 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid to Arg(1) of substance P, generating a radiopharmaceutical with a molecular weight of 1,806 Da and an IC(50) of 0.88 +/- 0.34 nmol/L. Cell biological studies were done with glioblastoma cell lines. neurokinin type-1 receptor (NK1R) autoradiography was done with 58 tumor biopsies. For labeling, (90)Y was mostly used. To reduce the "cross-fire effect" in critically located tumors, (177)Lut and (213)Bi were used instead. In a pilot study, we assessed feasibility, biodistribution, and early and long-term toxicity following i.t. injection of radiolabeled 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid substance P in 14 glioblastoma and six glioma patients of WHO grades 2 to 3. RESULTS: Autoradiography disclosed overexpression of NK1R in 55 of 58 gliomas of WHO grades 2 to 4. Internalization of the peptidic vector was found to be specific. Clinically, the radiopharmeutical was distributed according to tumor geometry. Only transient toxicity was seen as symptomatic radiogenic edema in one patient (observation period, 7-66 months). Disease stabilization and/or improved neurologic status was observed in 13 of 20 patients. Secondary resection disclosed widespread radiation necrosis with improved demarcation. CONCLUSIONS: Targeted radiotherapy using diffusible peptidic vectors represents an innovative strategy for local control of malignant gliomas, which will be further assessed as a neoadjuvant approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The recent identification of a cellular balance between ceramide and sphingosine 1-phosphate (S1P) as a critical regulator of cell growth and death has stimulated increasing research effort to clarify the role of ceramide and S1P in various diseases associated with dysregulated cell proliferation and apoptosis. S1P acts mainly, but not exclusively, by binding to and activating specific cell surface receptors, the so-called S1P receptors. These receptors belong to the class of G protein-coupled receptors that constitute five subtypes, denoted as S1P(1)-S1P(5), and represent attractive pharmacological targets to interfere with S1P action. Whereas classical receptor antagonists will directly block S1P action, S1P receptor agonists have also proven useful, as recently shown for the sphingolipid-like immunomodulatory substance FTY720. When phosphorylated by sphingosine kinase to yield FTY720 phosphate, it acutely acts as an agonist at S1P receptors, but upon prolonged presence, it displays antagonistic activity by specifically desensitizing the S1P(1) receptor subtype. This commentary will cover the most recent developments in the field of S1P receptor pharmacology and highlights the potential therapeutic benefit that can be expected from these novel drug targets in the future.