53 resultados para Adapted motor activity


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two healthy dogs were anaesthetized to undergo elective orthopaedic procedures. After premedication with methadone and acepromazine, general anaesthesia was induced with midazolam and S-ketamine. Immediately after anaesthetic induction, seizures occurred in both dogs. In the first dog the syndrome was characterized by tonic and clonic motor activity, muscular hypertone, hypersalivation, urination, defecation and hyperthermia. In the second dog muscular twitches of the temporal and masseter regions were observed, followed by increased skeletal muscles tone, hypersalivation, spontaneous urination and increase in body temperature. Recoveries from anaesthesia were uneventful and no seizures were observed. Considering the temporal association between anaesthetic induction and occurrence of seizures, and the fact that other causative factors could not be identified, it is hypothesized that S-ketamine played a role in determining the convulsive phenomena observed in these patients. S-ketamine might carry the potential for inducing seizures in otherwise healthy dogs, despite the concomitant use of GABA-ergic drugs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: Schizophrenia patients suffer from a variety of motor symptoms, including parkinsonism, catatonia, neurological soft signs, abnormal involuntary movements and psychomotor slowing. Methods: Literature review of prevalence rates and presentation of own results. Results: Parkinsonism and abnormal involuntary movements are intrinsic to schizophrenia, but may also be evoked by antipsychotic treatment. Reduced motor activity is associated with negative symptoms, catatonia and psychomotor slowing. Furthermore, 40 % of schizophrenia patients are impaired in gesture performance, which is related to executive and basic motor function. Mild motor disturbances are found in the majority of patients, while severe dysfunctions are limited to a minority. Our neuroimaging studies suggest that hypokinesia is caused by defective cortico-subcortical motor loops in schizophrenia. Taken together, a dimensional approach to schizophrenia motor symptoms seems promising. A purely descriptive assessment of motor signs is preferred over theoryladen categorization. Using objective motor parameters allows finding neural correlates of abnormal motor behaviour. Conclusion: The motor dimension of schizophrenia is linked to distinct disturbances in the cerebral motor system. Targeted modification of the defective motor system might become a relevant treatment option in patients suffering from schizophrenia with predominant motor features.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Schizophrenia is frequently associated with abnormal motor behavior, particularly hypokinesia. The course of the illness tends to deteriorate in the first years. We aimed to assess gross motor activity in patients with a first episode (n = 33) and multiple episodes (n = 115) of schizophrenia spectrum disorders using wrist actigraphy. First episode patients were younger, had higher motor activity and reduced negative symptom severity. Covarying for age, chlorpromazine equivalents, and negative symptoms, first episode patients still had higher motor activity. This was also true after excluding patients with schizophreniform disorder from the analyses. In first episode patients, but not in patients with multiple episodes, motor activity was correlated with antipsychotic dosage. In conclusion, after controlling for variables related to disorder chronicity, patients with first episodes were still more active than patients with multiple episodes. Thus, reduced motor activity is a marker of deterioration in the course of schizophrenia spectrum disorders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Altered frontal white matter integrity has been reported in major depression. Still, the behavioral correlates of these alterations are not established. In healthy subjects, motor activity correlated with white matter integrity in the motor system. To explore the relation of white matter integrity and motor activity in major depressive disorder, we investigated 21 medicated patients with major depressive disorder and 21 matched controls using diffusion tensor imaging and wrist actigraphy at the same day. Patients had lower activity levels (AL) compared with controls. Fractional anisotropy (FA) differed between groups in frontal white matter regions and the posterior cingulum. AL was linearly associated with white matter integrity in two clusters within the motor system. Controls had an exclusive positive association of FA and AL in white matter underneath the right dorsal premotor cortex. Only patients had a positive association within the posterior cingulum. Furthermore, patients had negative associations of FA and AL underneath the left primary motor cortex and within the left parahippocampal gyrus white matter. These differences in the associations between structure and behavior may contribute to well-known impaired motor planning or gait disturbances in major depressive disorder. Therefore, signs of psychomotor slowing in major depressive disorder may be linked to changes of the white matter integrity of the motor system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Unilateral damage to the labyrinth and the vestibular nerve cause rotational vertigo, postural imbalance, oculomotor disorders and spatial disorientation. Electrophysiological investigations in animals revealed that such deficits are partly due to imbalanced spontaneous activity and sensitivity to motion in neurons located in the ipsilesional and contralesional vestibular nuclei. Neurophysiological reorganizations taking place in the vestibular nuclei are the basis of the decline of the symptoms over time, a phenomenon known as vestibular compensation. Vestibular compensation is facilitated by motor activity and sensory experience, and current rehabilitation programs favor physical activity during the acute stage of a unilateral vestibular loss. Unfortunately, vestibular-defective patients tend to develop strategies in order to avoid movements causing imbalance and nausea (in particular body movements towards the lesioned side), which impedes vestibular compensation. Neuroanatomical evidence suggests a cortical control of postural and oculomotor reflexes based on corticofugal projections to the vestibular nuclei and, therefore, the possibility to manipulate vestibular functions through top-down mechanisms. Based on evidence from neuroimaging studies showing that imagined whole-body movements can activate part of the vestibular cortex, we propose that mental imagery of whole-body rotations to the lesioned and to the healthy side will help rebalancing the activity in the ipsilesional and contralesional vestibular nuclei. Whether imagined whole-body rotations can improve vestibular compensation could be tested in a randomized controlled study in such patients beneficiating, or not, from a mental imagery training. If validated, this hypothesis will help developing a method contributing to reduce postural instability and falls in vestibular-defective patients. Imagined whole-body rotations thus could provide a simple, safe, home-based and self-administered therapeutic method with the potential to overcome the inconvenience related to physical movements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Active head turns to the left and right have recently been shown to influence numerical cognition by shifting attention along the mental number line. In the present study, we found that passive whole-body motion influences numerical cognition. In a random-number generation task (Experiment 1), leftward and downward displacement of participants facilitated small number generation, whereas rightward and upward displacement facilitated the generation of large numbers. Influences of leftward and rightward motion were also found for the processing of auditorily presented numbers in a magnitude-judgment task (Experiment 2). Additionally, we investigated the reverse effect of the number-space association (Experiment 3). Participants were displaced leftward or rightward and asked to detect motion direction as fast as possible while small or large numbers were auditorily presented. When motion detection was difficult, leftward motion was detected faster when hearing small number and rightward motion when hearing large number. We provide new evidence that bottom-up vestibular activation is sufficient to interact with the higher-order spatial representation underlying numerical cognition. The results show that action planning or motor activity is not necessary to influence spatial attention. Moreover, our results suggest that self-motion perception and numerical cognition can mutually influence each other.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Neonates in a neonatal intensive care unit are exposed to a high number of painful procedures. Since repeated and sustained pain can have consequences for the neurological and behaviour-oriented development of the newborn, the greatest attention needs to be paid to systematic pain management in neonatology. Non-pharmacological treatment methods are being increasingly discussed with regard to pain prevention and relief either alone or in combination with pharmacological treatment. AIMS: To identify effective non-pharmacological interventions with regard to procedural pain in neonates. METHODS: A literature search was conducted via the MedLine, CINAHL, Cochrane Library databases and complemented by a handsearch. The literature search covered the period from 1984 to 2004. Data were extracted according to pre-defined criteria by two independent reviewers and methodological quality was assessed. RESULTS: 13 randomised controlled studies and two meta-analyses were taken into consideration with regard to the question of current nursing practice of non-pharmacological pain management methods. The selected interventions were "non-nutritive sucking", "music", "swaddling", "positioning", "olfactory and multisensorial stimulation", "kangaroo care" and "maternal touch". There is evidence that the methods of "non-nutritive sucking", "swaddling" and "facilitated tucking" do have a pain-alleviating effect on neonates. CONCLUSIONS: Some of the non-pharmacological interventions have an evident favourable effect on pulse rate, respiration and oxygen saturation, on the reduction of motor activity, and on the excitation states after invasive measures. However, unambiguous evidence of this still remains to be presented. Further research should emphasise the use of validated pain assessment instruments for the evaluation of the pain-alleviating effect of non-pharmacological interventions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RATIONALE: Nighttime agitation occurs frequently in patients with dementia and represents the number one burden on caregivers today. Current treatment options are few and limited due to substantial side effects. OBJECTIVES: The aim of the study was to measure the effect of the cannabinoid dronabinol on nocturnal motor activity. METHODS: In an open-label pilot study, six consecutive patients in the late stages of dementia and suffering from circadian and behavioral disturbances-five patients with Alzheimer's disease and one patient with vascular dementia-were treated with 2.5 mg dronabinol daily for 2 weeks. Motor activity was measured objectively using actigraphy. RESULTS: Compared to baseline, dronabinol led to a reduction in nocturnal motor activity (P=0.028). These findings were corroborated by improvements in Neuropsychiatric Inventory total score (P=0.027) as well as in subscores for agitation, aberrant motor, and nighttime behaviors (P<0.05). No side effects were observed. CONCLUSIONS: The study suggests that dronabinol was able to reduce nocturnal motor activity and agitation in severely demented patients. Thus, it appears that dronabinol may be a safe new treatment option for behavioral and circadian disturbances in dementia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Especially in pharmacotherapeutic research, a variety of methods to monitor behavioural and psychological symptoms of dementia (BPSD) are currently being discussed. To date, the most frequently used of these are clinical scales, which, however, are subjective and highly dependent on personnel resources. In our study, we tested the usefulness of actigraphy as a more direct and objective way to measure day-night rhythm disturbances and agitated behaviour.After a baseline assessment, 24 patients with probable dementia of the Alzheimer type (NINCDS-ADRDA) and agitated behaviour received either 3 mg melatonin (n=7), 2.5 mg dronabinol (n=7), or placebo (n=10) for two weeks. In addition, 10 young and 10 elderly healthy subjects were examined as a control group. Motor activity levels were assessed using an actigraph worn continuously on the wrist of the non-dominant hand. At the beginning and the end of the study, patients' Neuropsychiatric Inventory (NPI) scores were also assessed.In the verum group, actigraphic nocturnal activity (P=0.001), NPI total score (P=0.043), and NPI agitation subscale score (P=0.032) showed significant reductions compared to baseline. The treatment-baseline ratio of nocturnal activity (P=0.021) and treatment-baseline difference of the nocturnal portion of 24 h activity (P=0.012) were reduced. Patients' baseline activity levels were similar to those seen in healthy elderly subjects. Younger healthy subjects exhibited higher motor activity even at night. There was no correlation between actigraphy and NPI.Both actigraphic measures and the gold standard clinical scale were able to distinguish between the verum and placebo groups. However, because they did not correlate with each other, they clearly represent different aspects of BPSD, each of which reacts differently to therapy. As a result, actigraphy may well come to play an important role in monitoring treatment success in BPSD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adenosine A2A receptors are present on enkephalinergic medium sized striatal neurons in the rat and have an important function in the modulation of striatal output. In order to establish more accurately whether adenosine transmission is a generalized phenomenon in mammalian striatum we compared the A2A R expression in the mouse, rat, cat and human striatum. Secondly we compared the modulation of enkephalin gene expression and A2A receptor gene expression in rat striatal neurons after 6-OH-dopamine lesion of the substantia nigra. Hybridization histochemistry was performed with a 35S-labelled radioactive oligonucleotide probe. The results showed high expression of A2A adenosine receptor genes only in the medium-sized cells of the striatum in all examined species. In the rat striatum, expression of A2A receptors was not significantly altered after lesion of the dopaminergic pathways with 6-OH-dopamine even though enkephalin gene expression was up-regulated. The absence of a change in A2A receptor gene expression after 6-OH-dopamine treatment speaks against a dependency on dopaminergic innervation. The maintained inhibitory function of A2A R on motor activity in spite of dopamine depletion could be partly responsible for the depression of locomotor activity observed in basal ganglia disorders such as Parkinson's disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Excitatory amino acids (EAA) and particularly glutamate toxicity have been implicated in the pathogenesis of neuronal injury occurring in bacterial meningitis by activating the N-methyl-d aspartate (NMDA) receptor complex. Here, we evaluated the effect of adjuvant treatment with the antitussive drug dextromethorphan (DM), a non-competitive NMDA receptor antagonist with neuroprotective potential, in an infant rat model of pneumococcal meningitis. The experiments were carried out in postnatal day 6 (P6) and 11 (P11) animals. Pharmacokinetics of DM and its major metabolite dextrorphan (DO) were performed for dose finding. In our study, DM did not alter clinical parameters (clinical score, motor activity, incidence of seizures, spontaneous mortality) and cortical neuronal injury but increased the occurrence of ataxia (P<0.0001). When DM treatment was started at the time of infection (DM i.p. 15 mg/kg at 0, 4, 8 and 16 hours (h) post infection) in P11 animals, an aggravation of apoptotic neuronal death in the hippocampal dentate gyrus was found (P<0.05). When treatment was initiated during acute pneumococcal meningitis (DM i.p. 15 mg/kg at 12 and 15 h and 7.5 mg/kg at 18 and 21 h after infection), DM had no effect on the extent of brain injury but reduced the occurrence of seizures (P<0.03). We conclude that in this infant rat model of pneumococcal meningitis interference of the EEA and NMDA pathway using DM causes ataxia, attenuates epileptic seizures and increases hippocampal apoptosis, but is not effective in protecting the brain from injury.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Nocturnal dreams can be considered as a kind of simulation of the real world on a higher cognitive level (Erlacher & Schredl, 2008). Within lucid dreams, the dreamer is aware of the dream state and thus able to control the ongoing dream content. Previous studies could demonstrate that it is possible to practice motor tasks during lucid dreams and doing so improved performance while awake (Erlacher & Schredl, 2010). Even though lucid dream practice might be a promising kind of cognitive rehearsal in sports, little is known about the characteristics of actions in lucid dreams. The purpose of the present study was to explore the relationship between time in dreams and wakefulness because in an earlier study (Erlacher & Schredl, 2004) we found that performing squads took lucid dreamers 44.5 % more time than in the waking state while for counting the same participants showed no differences between dreaming and wakefulness. To find out if the task modality, the task length or the task complexity require longer times in lucid dreams than in wakefulness three experiments were conducted. Methods: In the first experiment five proficient lucid dreamers spent two to three non-consecutive nights in the sleep laboratory with polysomnographic recording to control for REM sleep and determine eye signals. Participants counted from 1-10, 1-20 and 1-30 in wakefulness and in their lucid dreams. While dreaming they marked onset of lucidity as well as beginning and end of the counting task with a Left-Right-Left-Right eye movement and reported their dreams after being awakened. The same procedure was used for the second experiment with seven lucid dreamers except that they had to walk 10, 20 or 30 steps. In the third experiment nine participants performed an exercise involving gymnastics elements such as various jumps and a roll. To control for length of the task the gymnastic exercise in the waking state lasted about the same time as walking 10 steps. Results: As a general result we found – as in the study before – that performing a task in the lucid dream requires more time than in wakefulness. This tendency was found for all three tasks. However, there was no difference for the task modality (counting vs. motor task). Also the relative time for the different lengths of the tasks showed no difference. And finally, the more complex motor task (gymnastic routine) did not require more time in lucid dreams than the simple motor task. Discussion/Conclusion: The results showed that there is a robust effect of time in lucid dreams compared to wakefulness. The three experiments could not explain that those differences are caused by task modality, task length or task complexity. Therefore further possible candidates needs to be investigated e.g. experience in lucid dreaming or psychological variables. References: Erlacher, D. & Schredl, M. (2010). Practicing a motor task in a lucid dream enhances subsequent performance: A pilot study. The Sport Psychologist, 24(2), 157-167. Erlacher, D. & Schredl, M. (2008). Do REM (lucid) dreamed and executed actions share the same neural substrate? International Journal of Dream Research, 1(1), 7-13. Erlacher, D. & Schredl, M. (2004). Time required for motor activity in lucid dreams. Perceptual and Motor Skills, 99, 1239-1242.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Disorganized behavior is a key symptom of schizophrenia. The objective assessment of disorganized behavior is particularly challenging. Actigraphy has enabled the objective assessment of motor behavior in various settings. Reduced motor activity was associated with negative syndrome scores, but simple motor activity analyses were not informative on other symptom dimensions. The analysis of movement patterns, however, could be more informative for assessing schizophrenia symptom dimensions. Here, we use time series analyses on actigraphic data of 100 schizophrenia spectrum disorder patients. Actigraphy recording intervals were set at 2 s. Data from 2 defined 60-min periods were analyzed, and partial autocorrelations of the actigraphy time series indicated predictability of movements in each individual. Increased positive syndrome scores were associated with reduced predictability of movements but not with the overall amount of movement. Negative syndrome scores were associated with low activity levels but unrelated with predictability of movement. The factors disorganization and excitement were related to movement predictability but emotional distress was not. Thus, the predictability of objectively assessed motor behavior may be a marker of positive symptoms and disorganized behavior. This behavior could become relevant for translational research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relationship between time in dreams and real time has intrigued scientists for centuries. The question if actions in dreams take the same time as in wakefulness can be tested by using lucid dreams where the dreamer is able to mark time intervals with prearranged eye movements that can be objectively identified in EOG recordings. Previous research showed an equivalence of time for counting in lucid dreams and in wakefulness (LaBerge, 1985; Erlacher and Schredl, 2004), but Erlacher and Schredl (2004) found that performing squats required about 40% more time in lucid dreams than in the waking state. To find out if the task modality, the task length, or the task complexity results in prolonged times in lucid dreams, an experiment with three different conditions was conducted. In the first condition, five proficient lucid dreamers spent one to three non-consecutive nights in the sleep laboratory. Participants counted to 10, 20, and 30 in wakefulness and in their lucid dreams. Lucidity and task intervals were time stamped with left-right-left-right eye movements. The same procedure was used for these condition where eight lucid dreamers had to walk 10, 20, or 30 steps. In the third condition, eight lucid dreamers performed a gymnastics routine, which in the waking state lasted the same time as walking 10 steps. Again, we found that performing a motor task in a lucid dream requires more time than in wakefulness. Longer durations in the dream state were present for all three tasks, but significant differences were found only for the tasks with motor activity (walking and gymnastics). However, no difference was found for relative times (no disproportional time effects) and a more complex motor task did not result in more prolonged times. Longer durations in lucid dreams might be related to the lack of muscular feedback or slower neural processing during REM sleep. Future studies should explore factors that might be associated with prolonged durations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There have been numerous attempts to reveal the neurobiological basis of schizophrenia spectrum disorders. Results however, remain as heterogeneous as the schizophrenia spectrum disorders itself. Therefore, one aim of this thesis was to divide patients affected by this disorder into subgroups in order to homogenize the results of future studies. In a first study it is suggested that psychopathological rating scales should focus on symptoms-clusters that may have a common neurophysiological background. The here presented Bern Psychopathology Scale (BPS) proposes that alterations in three wellknown brain systems (motor, language, and affective) are largely leading to the communication failures observable on a behavioral level, but also - as repeatedly hypothesized - to dysconnectivity within and between brain systems in schizophrenia spectrum disorders. The external validity of the motor domain in the BPS was tested against the objective measure of 24 hours wrist actigraphy, in a second study. The subjective, the quantitative, as well as the global rating of the degree of motor disorders in this patient group showed significant correlations to the acquired motor activity. This result confirmed in a first step the practicability of the motor domain of the BPS, but needs further validation regarding pathological brain alterations. Finally, in a third study (independent from the two other studies), two cerebral Resting State Networks frequently altered in schizophrenia were investigated for the first time using simultaneous EEG/fMRI: The well-known default mode network and the left working memory network. Besides the changes in these fMRI-based networks, there are well-documented findings that patients exhibit alterations in EEG spectra compared to healthy controls. However, only through the multimodal approach it was possible to discover that patients with schizophrenia spectrum disorders have a slower driving frequency of the Resting State Networks compared to the matched healthy controls. Such a dysfunctional coupling between neuronal frequency and functional brain organization could explain in a uni- or multifactorial way (dysfunctional cross-frequency coupling, maturational effects, vigilance fluctuations, task-related suppression), how the typical psychotic symptoms might occur. To conclude, the major contributions presented in this thesis were on one hand the development of a psychopathology rating scale that is based on the assumption of dysfunctional brain networks, as well as the new evidence of a dysfunctional triggering frequency of Resting State Networks from the simultaneous EEG/fMRI study in patients affected by a schizophrenia spectrum disorder.