31 resultados para Ad hoc network
Resumo:
Opportunistic routing (OR) employs a list of candi- dates to improve reliability of wireless transmission. However, list-based OR features restrict the freedom of opportunism, since only the listed nodes can compete for packet forwarding. Additionally, the list is statically generated based on a single metric prior to data transmission, which is not appropriate for mobile ad-hoc networks. This paper provides a thorough perfor- mance evaluation of a new protocol - Context-aware Opportunistic Routing (COR). The contributions of COR are threefold. First, it uses various types of context information simultaneously such as link quality, geographic progress, and residual energy of nodes to make routing decisions. Second, it allows all qualified nodes to participate in packet forwarding. Third, it exploits the relative mobility of nodes to further improve performance. Simulation results show that COR can provide efficient routing in mobile environments, and it outperforms existing solutions that solely rely on a single metric by nearly 20 - 40 %.
Resumo:
This paper considers a framework where data from correlated sources are transmitted with the help of network coding in ad hoc network topologies. The correlated data are encoded independently at sensors and network coding is employed in the intermediate nodes in order to improve the data delivery performance. In such settings, we focus on the problem of reconstructing the sources at decoder when perfect decoding is not possible due to losses or bandwidth variations. We show that the source data similarity can be used at decoder to permit decoding based on a novel and simple approximate decoding scheme. We analyze the influence of the network coding parameters and in particular the size of finite coding fields on the decoding performance. We further determine the optimal field size that maximizes the expected decoding performance as a trade-off between information loss incurred by limiting the resolution of the source data and the error probability in the reconstructed data. Moreover, we show that the performance of the approximate decoding improves when the accuracy of the source model increases even with simple approximate decoding techniques. We provide illustrative examples showing how the proposed algorithm can be deployed in sensor networks and distributed imaging applications.
Resumo:
Activities of daily living (ADL) are important for quality of life. They are indicators of cognitive health status and their assessment is a measure of independence in everyday living. ADL are difficult to reliably assess using questionnaires due to self-reporting biases. Various sensor-based (wearable, in-home, intrusive) systems have been proposed to successfully recognize and quantify ADL without relying on self-reporting. New classifiers required to classify sensor data are on the rise. We propose two ad-hoc classifiers that are based only on non-intrusive sensor data. METHODS: A wireless sensor system with ten sensor boxes was installed in the home of ten healthy subjects to collect ambient data over a duration of 20 consecutive days. A handheld protocol device and a paper logbook were also provided to the subjects. Eight ADL were selected for recognition. We developed two ad-hoc ADL classifiers, namely the rule based forward chaining inference engine (RBI) classifier and the circadian activity rhythm (CAR) classifier. The RBI classifier finds facts in data and matches them against the rules. The CAR classifier works within a framework to automatically rate routine activities to detect regular repeating patterns of behavior. For comparison, two state-of-the-art [Naïves Bayes (NB), Random Forest (RF)] classifiers have also been used. All classifiers were validated with the collected data sets for classification and recognition of the eight specific ADL. RESULTS: Out of a total of 1,373 ADL, the RBI classifier correctly determined 1,264, while missing 109 and the CAR determined 1,305 while missing 68 ADL. The RBI and CAR classifier recognized activities with an average sensitivity of 91.27 and 94.36%, respectively, outperforming both RF and NB. CONCLUSIONS: The performance of the classifiers varied significantly and shows that the classifier plays an important role in ADL recognition. Both RBI and CAR classifier performed better than existing state-of-the-art (NB, RF) on all ADL. Of the two ad-hoc classifiers, the CAR classifier was more accurate and is likely to be better suited than the RBI for distinguishing and recognizing complex ADL.
Resumo:
Greedy routing can be used in mobile ad-hoc networks as geographic routing protocol. This paper proposes to use greedy routing also in overlay networks by positioning overlay nodes into a multi-dimensional Euclidean space. Greedy routing can only be applied when a routing decision makes progress towards the final destination. Our proposed overlay network is built such that there will be always progress at each forwarding node. This is achieved by constructing at each node a so-called nearest neighbor convex set (NNCS). NNCSs can be used for various applications such as multicast routing, service discovery and Quality-of-Service routing. NNCS has been compared with Pastry, another topology-aware overlay network. NNCS has superior relative path stretches indicating the optimality of a path.
Resumo:
1. The acceptance of reserves as a useful management strategy relies on evidence of their effectiveness in preserving stocks of harvested species and conserving biodiversity. A history of ad hoc decisions in terrestrial and marine protected area planning has meant that many of these areas are contributing inefficiently to conservation goals. The conservation value of existing protected areas should be assessed when planning the placement of additional areas in a reserve network. 2. This study tested (1) the effectiveness of protection for intertidal molluscs of a marine reserve (Bouddi Marine Extension, NSW, Australia) established in 1971, and (2) the contribution of the protected area to the conservation of regional species, assemblages, and habitats. 3. The shell length and population density of one harvested (Cellana tramoserica), and three non-harvested species (Bembicium nanum, Morula marginalba, Nerita atramentosa) of intertidal molluscs were examined in the protected area and two reference locations over two seasons. 4. The heavily collected limpet C. tramoserica was significantly larger in the protected area and was the only species to exhibit a significant difference. No species significantly differed in population density between the protected area and reference locations. 5. Temporally replicated surveys of macro-molluscs at 21 locations over 75km of coastline identified that the existing protected area included 50% of species, two of five assemblage types and 19 of 20 intertidal rocky shore habitats surveyed in the study region. Reservation of a further three rocky reefs would protect a large proportion of species (71%), a representative of each assemblage and all habitat types. 6. Despite originally being selected in the absence of information on regional biodiversity, the protected area is today an effective starting point for expansion to a regional network of intertidal protected areas.
Resumo:
Wireless networks have become more and more popular because of ease of installation, ease of access, and support of smart terminals and gadgets on the move. In the overall life cycle of providing green wireless technology, from production to operation and, finally, removal, this chapter focuses on the operation phase and summarizes insights in energy consumption of major technologies. The chapter also focuses on the edge of the network, comprising network access points (APs) and mobile user devices. It discusses particularities of most important wireless networking technologies: wireless access networks including 3G/LTE and wireless mesh networks (WMNs); wireless sensor networks (WSNs); and ad-hoc and opportunistic networks. Concerning energy efficiency, the chapter discusses challenges in access, wireless sensor, and ad-hoc and opportunistic networks.
Resumo:
User experience on watching live videos must be satisfactory even under the inuence of different network conditions and topology changes, such as happening in Flying Ad-Hoc Networks (FANETs). Routing services for video dissemination over FANETs must be able to adapt routing decisions at runtime to meet Quality of Experience (QoE) requirements. In this paper, we introduce an adaptive beaconless opportunistic routing protocol for video dissemination over FANETs with QoE support, by taking into account multiple types of context information, such as link quality, residual energy, buffer state, as well as geographic information and node mobility in a 3D space. The proposed protocol takes into account Bayesian networks to define weight vectors and Analytic Hierarchy Process (AHP) to adjust the degree of importance for the context information based on instantaneous values. It also includes a position prediction to monitor the distance between two nodes in order to detect possible route failure.
Resumo:
The evolution of wireless access technologies and mobile devices, together with the constant demand for video services, has created new Human-Centric Multimedia Networking (HCMN) scenarios. However, HCMN poses several challenges for content creators and network providers to deliver multimedia data with an acceptable quality level based on the user experience. Moreover, human experience and context, as well as network information play an important role in adapting and optimizing video dissemination. In this paper, we discuss trends to provide video dissemination with Quality of Experience (QoE) support by integrating HCMN with cloud computing approaches. We identified five trends coming from such integration, namely Participatory Sensor Networks, Mobile Cloud Computing formation, QoE assessment, QoE management, and video or network adaptation.