18 resultados para Active modal damping control
Resumo:
The naphthoquinone buparvaquone is currently the only drug used against theileriosis. Here, the effects of buparvaquone were investigated in vitro and in an experimental mouse model for Neospora caninum infection. In 4-day proliferation assays, buparvaquone efficiently inhibited N. caninum tachyzoite replication (IC50 = 4.9 nM; IC100 = 100 nM). However, in the long term tachyzoites adapted and resumed proliferation in the presence of 100 nM buparvaquone after 20 days of cultivation. Parasiticidal activity was noted after 9 days of culture in 0.5 µM or 6 days in 1 µM buparvaquone. TEM of N. caninum infected fibroblasts treated with 1 µM buparvaquone showed that the drug acted rather slowly, and ultrastructural changes were evident only after 3-5 days of treatment, including severe alterations in the parasite cytoplasm, changes in the composition of the parasitophorous vacuole matrix and a diminished integrity of the vacuole membrane. Treatment of N. caninum infected mice with buparvaquone (100 mg/kg) either by intraperitoneal injection or gavage prevented neosporosis symptoms in 4 out of 6 mice in the intraperitoneally treated group, and in 6 out of 7 mice in the group receiving oral treatment. In the corresponding controls, all 6 mice injected intraperitoneally with corn oil alone died of acute neosporosis, and 4 out of 6 mice died in the orally treated control group. Assessment of infection intensities in the treatment groups showed that, compared to the drug treated groups, the controls showed a significantly higher parasite load in the lungs while cerebral parasite load was higher in the buparvaquone-treated groups. Thus, although buparvaquone did not eliminate the parasites infecting the CNS, the drug represents an interesting lead with the potential to eliminate, or at least diminish, fetal infection during pregnancy.
Resumo:
The intracellular parasite Theileria parva infects and transforms bovine T-cells, inducing their uncontrolled proliferation and spread in non-lymphoid as well as lymphoid tissues. This parasite-induced transformation is the predominant factor contributing to the pathogenesis of a lymphoproliferative disease, called East Coast fever. T. parva-transformed cells become independent of antigenic stimulation or exogenous growth factors. A dissection of the signalling pathways that are activated in T. parva-infected cells shows that the parasite bypasses signalling pathways that normally emanate from the T-cell antigen receptor to induce continuous proliferation. This review concentrates on the influence of the parasite on the state of activation of the mitogen-activated protein kinase (MAPK), NF-kappaB and phosphoinositide-3-kinase (PI3-K) pathways in the host cell. Of the MAPKs, JNK, but not ERK or p38, is active, inducing constitutive activation of the transcription factors AP-1 and ATF-2. A crucial step in the transformation process is the persistent activation of the transcription factor NF-kappaB, which protects T. parva-transformed cells from spontaneous apoptosis accompanying the transformation process. Inhibitor studies also suggest an important role for the lipid kinase, PI-3K, in the continuous proliferation of T. parva-transformed lymphocytes.
Resumo:
We tested the assumption that active relaxation following an ego-depletion task counteracts the negative effects of ego depletion on subsequent performance under evaluative pressure. N = 39 experienced basketball players were randomly assigned to a relaxation condition or to a control condition, and then performed a series of free-throws at two points of measurement (T1: baseline vs. T2: after working on a depleting task and either receiving active relaxation or a simple break). The results demonstrated that performance remained constant in the relaxation condition, whereas it significantly decreased in the control condition. The findings are in line with the notion that active relaxation leads to a quicker recovery from ego depletion.