27 resultados para Abrasion fastness
Resumo:
The Bodélé Depression (Chad) in the central Sahara/Sahel region of Northern Africa is the most important source of mineral dust to the atmosphere globally. The Bodélé Depression is purportedly the largest source of Saharan dust reaching the Amazon Basin by transatlantic transport. Here, we have undertaken a comprehensive study of surface sediments from the Bodélé Depression and dust deposits (Chad, Niger) in order to characterize geochemically and isotopically (Sr, Nd and Pb isotopes) this dust source, and evaluate its importance in present and past African dust records. We similarly analyzed sedimentary deposits from the Amazonian lowlands in order to assess postulated accumulation of African mineral dust in the Amazon Basin, as well as its possible impact in fertilizing the Amazon rainforest. Our results identify distinct sources of different ages and provenance in the Bodélé Depression versus the Amazon Basin, effectively ruling out an origin for the Amazonian deposits, such as the Belterra Clay Layer, by long-term deposition of Bodélé Depression material. Similarly, no evidence for contributions from other potential source areas is provided by existing isotope data (Sr, Nd) on Saharan dusts. Instead, the composition of these Amazonian deposits is entirely consistent with derivation from in-situ weathering and erosion of the Precambrian Amazonian craton, with little, if any, Andean contribution. In the Amazon Basin, the mass accumulation rate of eolian dust is only around one-third of the vertical erosion rate in shield areas, suggesting that Saharan dust is “consumed” by tropical weathering, contributing nutrients and stimulating plant growth, but never accumulates as such in the Amazon Basin. The chemical and isotope compositions found in the Bodélé Depression are varied at the local scale, and have contrasting signatures in the “silica-rich” dry lake-bed sediments and in the “calcium-rich” mixed diatomites and surrounding sand material. This unexpected finding implies that the Bodélé Depression material is not “pre-mixed” at the source to provide a homogeneous source of dust. Rather, different isotope signatures can be emitted depending on subtle vagaries of dust-producing events. Our characterization of the Bodélé Depression components indicate that the Bodélé “calcium-rich” component, identified here, is most likely released via eolian processes of sand grain saltation and abrasion and may be significant in the overall global budget of dusts carried out by the Harmattan low-level jet during the winter.
Resumo:
Detrital studies that utilize zircon U–Pb geochronology and fission-track (FT) thermochronometry are subject to a range of potential sources of bias that should be properly evaluated and minimized. Some of them are common to any single-grain mineral analysis (e.g., variable bedrock mineral fertility, hydraulic sorting during transport, selective grain loss during sample processing), whereas others are intrinsic to zircon, and are related to radiation damage and age discordance. In this article, we quantify the impact of intrinsic bias on detrital studies thanks to the analysis of modern detritus shed from the European Alps, and illustrate the general implications on geological interpretations. We show that detrital zircon U–Pb age distributions based on statistically robust datasets are highly reproducible and representative of the parent bedrock ages in the catchment. Arbitrary or selective removal of discordant grain ages can be minimized by using the Kolmogorov–Smirnov test to identify an appropriate cutoff level. Loss of metamict (α-damaged) zircon has a minor impact on data representativeness, and is mainly controlled by regional metamorphism rather than by mechanical abrasion during river transport. Zircon FT grain-age distributions were found to have poor reproducibility, although age spectra are consistent with bedrock data. However, unlike the U–Pb datasets, U-rich zircon grains (> 1000 ppm) are systematically missed, and undatable grains may exceed 50%. We identify two major sources of distribution bias specific to zircon FT datasets: (i) sediment sources dominated by U-rich zircon grains are markedly underrepresented in the detrital record, because such grains often have uncountable high densities of fission tracks (“U concentration bias”); (ii) sediment sources that shed zircon grains with high levels of α-damage are underrepresented, because these grains are lost during chemical etching for FT revelation (“etching bias”). In the case of multimethod dating on the same grains (e.g., FT and U–Pb double dating), bias affecting detrital zircon FT dating propagates to the entire dataset. These effects may not impact on exhumation-rate studies that utilize the youngest grain ages (i.e., lag-time approach). However, they represent a limiting factor for conventional provenance studies, and generally preclude application of zircon FT dating to sediment budget calculations.
Resumo:
The bedrock topography beneath the Quaternary cover provides an important archive for the identification of erosional processes during past glaciations. Here, we combined stratigraphic investigations of more than 40,000 boreholes with published data to generate a bedrock topography model for the entire plateau north of the Swiss Alps including the valleys within the mountain belt. We compared the bedrock map with data about the pattern of the erosional resistance of Alpine rocks to identify the controls of the lithologic architecture on the location of overdeepenings. We additionally used the bedrock topography map as a basis to calculate the erosional potential of the Alpine glaciers, which was related to the thickness of the LGM ice. We used these calculations to interpret how glaciers, with support by subglacial meltwater under pressure, might have shaped the bedrock topography of the Alps. We found that the erosional resistance of the bedrock lithology mainly explains where overdeepenings in the Alpine valleys and the plateau occur. In particular, in the Alpine valleys, the locations of overdeepenings largely overlap with areas where the underlying bedrock has a low erosional resistance, or where it was shattered by faults. We also found that the assignment of two end-member scenarios of erosion, related to glacial abrasion/plucking in the Alpine valleys, and dissection by subglacial meltwater in the plateau, may be adequate to explain the pattern of overdeepenings in the Alpine realm. This most likely points to the topographic controls on glacial scouring. In the Alps, the flow of LGM and previous glaciers were constrained by valley flanks, while ice flow was mostly divergent on the plateau where valley borders are absent. We suggest that these differences in landscape conditioning might have contributed to the contrasts in the formation of overdeepenings in the Alpine valleys and the plateau.
Resumo:
Susceptibility of different restorative materials to toothbrush abrasion and coffee staining Objective: The aim of this study was to evaluate the susceptibility of different restorative materials to surface alterations after an aging simulation. Methods: Specimens (n=15 per material) of five different restorative materials (CER: ceramic/Vita Mark II; EMP: composite/Empress Direct; LAV: CAD/CAM composite/Lava Ultimate; COM: prefabricated composite/Componeer; VEN: prefabricated composite/Venear) were produced. Whereas CER was glazed, EMP and LAV were polished with silicon polishers, and COM and VEN were left untreated. Mean roughness (Ra and Rz) and colorimetric parameters (L*a*b*), expressed as colour change (E), were measured. The specimens underwent an artificial aging procedure. After baseline measurements (M1), the specimens were successively immersed for 24 hours in coffee (M2), abraded in a toothbrushing simulator (M3), immersed in coffee (M4), abraded (M5) and repeatedly abraded (M6). After each aging procedure (M2-M6), surface roughness and colorimetric parameters were recorded. Differences between the materials regarding Ra/Rz and E were analysed with a nonparametric ANOVA analysis. The level of significance was set at α=0.05. Results: The lowest roughness values were obtained for CER. A significant increase in Ra was detected for EMP, COM and VEN compared to CER. The Ra/Rz values were found to be highly significantly different for the materials and measuring times (M) (p<0.0001). Regarding E most alterations were found for EMP and COM, whereas CER and LAV remained mostly stable. The E values were significantly different for the materials and M (p<0.0001). Conclusion: The ceramic and the CAD/CAM composite were the most stable materials with regard to roughness and colour change and the only materials that resulted in Ra values below 0.2 μm (the clinically relevant threshold). Venears and Componeers were more inert than the direct composite material and thus might be an alternative for extensive restorations in the aesthetic zone.
Resumo:
Five cats with large, distal extremity abrasion wounds were treated with an autogenous, full-thickness, mesh skin graft. Survival of the mesh grafts in all five cats was considered between 90 and 100%. Successful grafting requires asepsis, an adequately prepared recipient bed consisting of healthy granulation tissue, proper harvesting and preparation of the graft, meticulous surgical technique and strict postoperative care. Factors that are essential for the survival of skin grafts include good contact between the graft and the recipient bed, normal tension on the sutured graft, strict immobilization after grafting and prevention of accumulation of blood or serum under the graft. Meshing the graft provides more graft flexibility over uneven surfaces and allows adequate drainage. In contrast to previous proposals, the authors recommend no bandage change before the fourth day after grafting. Full-thickness mesh skin grafting can be used to successfully treat large distal skin wounds in cats.
Resumo:
The purpose of this study was to determine if storage for up to 4 h in human saliva results in a decrease of erosive tooth wear (ETW) and in an increase of surface microhardness (SMH) of enamel samples after an erosive attack with subsequent abrasion. Furthermore, we determined the impact of individual salivary parameters on ETW and SMH. Enamel samples were distributed into five groups: group 1 had neither erosion nor saliva treatment; groups 2-5 were treated with erosion, then group 2 was placed in a humid chamber and groups 3-5 were incubated in saliva for 30 min, 2 h, and 4 h, respectively. After erosion and saliva treatments, all groups were treated with abrasion. Surface microhardness and ETW were measured before and after erosion, incubation in saliva, and abrasion. Surface microhardness and ETW showed significant changes throughout the experiment: SMH decreased and ETW increased in groups 2-5, regardless of the length of incubation in saliva. The results of groups 3-5 (exposed to saliva) were not significantly different from those of group 2 (not exposed to saliva). Exposure of eroded enamel to saliva for up to 4 h was not able to increase SMH or reduce ETW. However, additional experiments with artificial saliva without proteins showed protection from erosive tooth wear. The recommendation to postpone toothbrushing of enamel after an erosive attack should be reconsidered.
Resumo:
Erosive tooth wear in children is a common condition. Besides the anatomical differences between deciduous and permanent teeth, additional histological differences may influence their susceptibility to dissolution. Considering laboratory studies alone, it is not clear whether deciduous teeth are more liable to erosive wear than permanent teeth. However, results from epidemiological studies imply that the primary dentition is less wear resistant than permanent teeth, possibly due to the overlapping of erosion with mechanical forces (like attrition or abrasion). Although low severity of tooth wear in children does not cause a significant impact on their quality of life, early erosive damage to their permanent teeth may compromise their dentition for their entire lifetime and require extensive restorative procedures. Therefore, early diagnosis of erosive wear and adequate preventive measures are important. Knowledge on the aetiological factors of erosive wear is a prerequisite for preventive strategies. Like in adults, extrinsic and intrinsic factors, or a combination of them, are possible reasons for erosive tooth wear in children and adolescents. Several factors directly related to erosive tooth wear in children are presently discussed, such as socio-economic aspects, gastroesophageal reflux or vomiting, and intake of some medicaments, as well as behavioural factors such as unusual eating and drinking habits. Additionally, frequent and excessive consumption of erosive foodstuffs and drinks are of importance.
Resumo:
A prerequisite for preventive measures is to diagnose erosive tooth wear and to evaluate the different etiological factors in order to identify persons at risk. No diagnostic device is available for the assessment of erosive defects. Thus, they can only be detected clinically. Consequently, erosion not diagnosed at an early stage may render timely preventive measures difficult. In order to assess the risk factors, patients should record their dietary intake for a distinct period of time. Then a dentist can determine the erosive potential of the diet. A table with common beverages and foodstuffs is presented for judging the erosive potential. Particularly, patients with more than 4 dietary acid intakes have a higher risk for erosion when other risk factors are present. Regurgitation of gastric acids is a further important risk factor for the development of erosion which has to be taken into account. Based on these analyses, an individually tailored preventive program may be suggested to the patients. It may comprise dietary advice, use of calcium-enriched beverages, optimization of prophylactic regimes, stimulation of salivary flow rate, use of buffering medicaments and particular motivation for nondestructive toothbrushing habits with an erosive-protecting toothpaste as well as rinsing solutions. Since erosion and abrasion often occur simultaneously, all of the causative components must be taken into consideration when planning preventive strategies but only those important and feasible for an individual should be communicated to the patient.
Resumo:
OBJECTIVES To characterize the physical characteristics of a new low abrasive erythritol powder (EPAP) and to evaluate its influence on the clinical and microbiologic parameters over a period of 6 months in patients undergoing supportive periodontal therapy (SPT). METHOD AND MATERIALS Prior to the clinical application, the particle size and abrasion level of EPAP were compared to glycine air-polishing powder (GPAP) ex vivo. Subsequently, 40 chronic periodontitis patients previously enrolled in SPT were randomly assigned into two groups for the treatment with subgingival EPAP or repeated scaling and root planing (SRP). At baseline (BL), bleeding on probing positive (BOP+) sites with probing pocket depth (PPD) of ≥ 4 mm but no detectable calculus were defined as study sites. During SPT, these sites were either treated by EPAP or SRP at BL, 3, and 6 months (3M, 6M). When indicated, additional SRP was provided. Plaque Index, BOP, PPD, clinical attachment level (CAL), and subgingival plaque were evaluated at BL and 6M. RESULTS EPAP yielded lower abrasiveness and smaller particle sizes when compared to GPAP. In 38 patients completing the study, EPAP and SRP resulted in significant reductions of BOP% (EPAP, 40.45%; SRP, 42.53%), PPD (EPAP, -0.67; SRP, -0.68), and increase of CAL (EPAP, 0.48; SRP, 0.61) while at 6M no statistically significant between-group differences were observed (P > .05). Microbiologic evaluation revealed minor shifts in the composition of the subgingival biofilm without influence on periodontopathogenic bacteria. CONCLUSION The subgingival use of EPAP by means of an air-polishing device may be considered safe and may lead to comparable clinical and microbiologic outcomes to those obtained with SRP. CLINICAL RELEVANCE The subgingival use of EPAP appears to represent a promising modality for the removal of subgingival biofilm during SPT.
Resumo:
Detrital provenance analyses in orogenic settings, in which sediments are collected at the outlet of a catchment, have become an important tool to estimate how erosion varies in space and time. Here we present how Raman Spectroscopy on Carbonaceous Material (RSCM) can be used for provenance analysis. RSCM provides an estimate of the peak temperature (RSCM-T) experienced during metamorphism. We show that we can infer modern erosion patterns in a catchment by combining new measurements on detrital sands with previously acquired bedrock data. We focus on the Whataroa catchment in the Southern Alps of New Zealand and exploit the metamorphic gradient that runs parallel to the main drainage direction. To account for potential sampling biases, we also quantify abrasion properties using flume experiments and measure the total organic carbon content in the bedrock that produced the collected sands. Finally, we integrate these parameters into a mass-conservative model. Our results first demonstrate that RSCM-T can be used for detrital studies. Second, we find that spatial variations in tracer concentration and erosion have a first-order control on the RSCM-T distributions, even though our flume experiments reveal that weak lithologies produce substantially more fine particles than do more durable lithologies. This result implies that sand specimens are good proxies for mapping spatial variations in erosion when the bedrock concentration of the target mineral is quantified. The modeling suggests that highest present-day erosion rates (in Whataroa catchment) are not situated at the range front but around 10 km into the mountain belt.
Resumo:
Purpose: To investigate the effect of airborne-particle abrasion or diamond bur preparation as pretreatment steps of non-carious cervical root dentin regarding substance loss and bond strength. Methods: 45 dentin specimens produced from crowns of extracted human incisors by grinding the labial surfaces with silicon carbide papers (control) were treated with one of three adhesive systems (Group 1A-C; A: OptiBond FL, B: Clearfil SE Bond, or C: Scotchbond Universal; n=15/adhesive system). Another 135 dentin specimens (n=15/group) produced from the labial, non-carious cervical root part of extracted human incisors were treated with one of the adhesive systems after either no pre-treatment (Group 2A-C), pre-treatment with airborne-particle abrasion (CoJet Prep and 50 µm aluminum oxide powder; Group 3A-C), or pre-treatment with diamond bur preparation (40 µm grit size; Group 4A-C). Substance loss caused by the pre-treatment was measured in Groups 3 and 4. After treatment with the adhesive systems, resin composite was applied and all specimens were stored (37°C, 100% humidity, 24 hours) until measurement of microshear bond strength (µSBS). Data were analyzed with a nonparametric ANOVA followed by Kruskal-Wallis and Wilcoxon rank sum tests (level of significance: alpha=0.05). Results: Overall substance loss was significantly lower in Group 3 (median: 19 µm) than in Group 4 (median: 113 µm; p<0.0001). There were no significant differences in µSBS between the adhesive systems (A-C) in Group 1, Group 3, and Group 4 (p>=0.133). In Group 2, OptiBond FL (Group 2A) and Clearfil SE Bond (Group 2B) yielded significantly higher µSBS than Scotchbond Universal (Group 2C; p<=0.032). For OptiBond FL and Clearfil SE Bond, there were no significant differences in µSBS between the ground crown dentin and the non-carious cervical root dentin regardless of any pre-treatment of the latter (both p=0.661). For Scotchbond Universal, the µSBS to non-carious cervical root dentin without pre-treatment was significantly lower than to ground crown dentin and to non-carious cervical root dentin pre-treated with airborne-particle abrasion or diamond bur preparation p<=0.014).
Resumo:
The aim of the study was to compare fissure sealant quality after mechanical conditioning of erbium-doped yttrium aluminium garnet (Er:YAG) laser or air abrasion prior to chemical conditioning of phosphoric acid etching or of a self-etch adhesive. Twenty-five permanent molars were initially divided into three groups: control group (n = 5), phosphoric acid etching; test group 1 (n = 10), air abrasion; and test group 2, (n = 10) Er:YAG laser. After mechanical conditioning, the test group teeth were sectioned buccolingually and the occlusal surface of one half tooth (equal to one sample) was acid etched, while a self-etch adhesive was applied on the other half. The fissure system of each sample was sealed, thermo-cycled and immersed in 5% methylene dye for 24 h. Each sample was sectioned buccolingually, and one slice was analysed microscopically. Using specialized software microleakage, unfilled margin, sealant failure and unfilled area proportions were calculated. A nonparametric ANOVA model was applied to compare the Er:YAG treatment with that of air abrasion and the self-etch adhesive with phosphoric acid (α = 0.05). Test groups were compared to the control group using Wilcoxon rank sum tests (α = 0.05). The control group displayed significantly lower microleakage but higher unfilled area proportions than the Er:YAG laser + self-etch adhesive group and displayed significantly higher unfilled margin and unfilled area proportions than the air-abrasion + self-etch adhesive group. There was no statistically significant difference in the quality of sealants applied in fissures treated with either Er:YAG laser or air abrasion prior to phosphoric acid etching, nor in the quality of sealants applied in fissures treated with either self-etch adhesive or phosphoric acid following Er:YAG or air-abrasion treatment.