27 resultados para APO3 host factors


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The apicomplexan parasites Theileria annulata and Theileria parva cause severe lymphoproliferative disorders in cattle. Disease pathogenesis is linked to the ability of the parasite to transform the infected host cell (leukocyte) and induce uncontrolled proliferation. It is known that transformation involves parasite dependent perturbation of leukocyte signal transduction pathways that regulate apoptosis, division and gene expression, and there is evidence for the translocation of Theileria DNA binding proteins to the host cell nucleus. However, the parasite factors responsible for the inhibition of host cell apoptosis, or induction of host cell proliferation are unknown. The recent derivation of the complete genome sequence for both T. annulata and T. parva has provided a wealth of information that can be searched to identify molecules with the potential to subvert host cell regulatory pathways. This review summarizes current knowledge of the mechanisms used by Theileria parasites to transform the host cell, and highlights recent work that has mined the Theileria genomes to identify candidate manipulators of host cell phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Many parasitic organisms, eukaryotes as well as bacteria, possess surface antigens with amino acid repeats. Making up the interface between host and pathogen such repetitive proteins may be virulence factors involved in immune evasion or cytoadherence. They find immunological applications in serodiagnostics and vaccine development. Here we use proteins which contain perfect repeats as a basis for comparative genomics between parasitic and free-living organisms. RESULTS: We have developed Reptile http://reptile.unibe.ch, a program for proteome-wide probabilistic description of perfect repeats in proteins. Parasite proteomes exhibited a large variance regarding the proportion of repeat-containing proteins. Interestingly, there was a good correlation between the percentage of highly repetitive proteins and mean protein length in parasite proteomes, but not at all in the proteomes of free-living eukaryotes. Reptile combined with programs for the prediction of transmembrane domains and GPI-anchoring resulted in an effective tool for in silico identification of potential surface antigens and virulence factors from parasites. CONCLUSION: Systemic surveys for perfect amino acid repeats allowed basic comparisons between free-living and parasitic organisms that were directly applicable to predict proteins of serological and parasitological importance. An on-line tool is available at http://genomics.unibe.ch/dora.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal and early clinical studies of gene therapy for tissue ischaemia suggested that this approach might provide benefit to patients with coronary artery disease not amenable to traditional revascularization. This enthusiasm was then tempered by the subsequent disappointing results of randomized clinical trials and led researchers to develop strategies using progenitor cells as an alternative to improve collateral function. However, the recent publication of several randomized clinical trials reporting either negative or weakly positive results using this approach have led to questions regarding its effectiveness. There are several factors that need to be considered in explaining the discordance between the positive studies of such treatments in animals and the disappointing results seen in randomized patient trials. Aside from the practical issues of arteriogenic therapies, such as effective delivery, vascular remodelling is an extraordinarily complex process, and the administration of a single agent or cell in the hope that it would lead to lasting physiological effects may be far too simplistic an approach. In addition, however, evidence now suggests that many of the traditional cardiovascular risk factors-such as age and hypercholesterolemia-may impair the host response not only to ischaemia but, critically, also to treatment as well. This review discusses the evidence and mechanisms for these observations and highlights future directions that might be taken in an effort to provide more effective therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this single-center, cross-sectional study, we evaluated 44 very long-term survivors with a median follow-up of 17.5 years (range, 11-26 years) after hematopoietic stem cell transplantation. We assessed the telomere length difference in human leukocyte antigen-identical donor and recipient sibling pairs and searched for its relationship with clinical factors. The telomere length (in kb, mean +/- SD) was significantly shorter in all recipient blood cells compared with their donors' blood cells (P < .01): granulocytes (6.5 +/- 0.9 vs 7.1 +/- 0.9), naive/memory T cells (5.7 +/- 1.2 vs 6.6 +/- 1.2; 5.2 +/- 1.0 vs 5.7 +/- 0.9), B cells (7.1 +/- 1.1 vs 7.8 +/- 1.1), and natural killer/natural killer T cells (4.8 +/- 1.0 vs 5.6 +/- 1.3). Chronic graft-versus-host disease (P < .04) and a female donor (P < .04) were associated with a greater difference in telomere length between donor and recipient. Critically short telomeres have been described in degenerative diseases and secondary malignancies. If this hypothesis can be confirmed, identification of recipients at risk for cellular senescence could become part of monitoring long-term survivors after hematopoietic stem cell transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Excessive uptake of commensal bacterial antigens through a permeable intestinal barrier may influence host responses to specific antigen in a genetically predisposed host. The aim of this study was to investigate whether intestinal barrier dysfunction induced by indomethacin treatment affects the host response to intestinal microbiota in gluten-sensitized HLA-DQ8/HCD4 mice. METHODOLOGY/PRINCIPAL FINDINGS: HLA-DQ8/HCD4 mice were sensitized with gluten, and gavaged with indomethacin plus gluten. Intestinal permeability was assessed by Ussing chamber; epithelial cell (EC) ultra-structure by electron microscopy; RNA expression of genes coding for junctional proteins by Q-real-time PCR; immune response by in-vitro antigen-specific T-cell proliferation and cytokine analysis by cytometric bead array; intestinal microbiota by fluorescence in situ hybridization and analysis of systemic antibodies against intestinal microbiota by surface staining of live bacteria with serum followed by FACS analysis. Indomethacin led to a more pronounced increase in intestinal permeability in gluten-sensitized mice. These changes were accompanied by severe EC damage, decreased E-cadherin RNA level, elevated IFN-gamma in splenocyte culture supernatant, and production of significant IgM antibody against intestinal microbiota. CONCLUSION: Indomethacin potentiates barrier dysfunction and EC injury induced by gluten, affects systemic IFN-gamma production and the host response to intestinal microbiota antigens in HLA-DQ8/HCD4 mice. The results suggest that environmental factors that alter the intestinal barrier may predispose individuals to an increased susceptibility to gluten through a bystander immune activation to intestinal microbiota.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protozoan parasites are one of the major causes of diseases worldwide. The vector transmitted parasites exhibit complex life cycles involving interactions between humans, protozoa, and arthropods. In order to adapt themselves to the changing microenvironments, they have to undergo complex morphological and metabolic changes. These changes can be brought about by expressing a new pool of proteins in the cell or by modifying the existing repertoire of proteins via posttranslational modifications (PTMs). PTMs involve covalent modification and processing of proteins thereby modulating their functions. Some of these changes may involve PTMs of parasite proteins to help the parasite survive within the host and the vector. Out of many PTMs known, three are unique since they occur only on single proteins: ethanolamine phosphoglycerol (EPG) glutamate, hypusine and diphthamide. These modifications occur on eukaryotic elongation factor 1A (eEF1A), eukaryotic initiation factor 5A (eIF5A) and eukaryotic elongation factor 2 (eEF2), respectively. Interestingly, the proteins carrying these unique modifications are all involved in the elongation steps of translation. Here we review these unique PTMs, which are well conserved in protozoan parasites, and discuss their roles in viability and pathogenesis of parasites. Characterization of these modifications and studying their roles in physiology as well as pathogenesis will provide new insights in parasite biology, which may also help in developing new therapeutic interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Babesia are tick-borne parasites that are increasingly considered as a threat to animal and public health. We aimed to assess the role of European free-ranging wild ruminants as maintenance mammalian hosts for Babesia species and to determine risk factors for infection. EDTA blood was collected from 222 roe deer (Capreolus c. capreolus), 231 red deer (Cervus e. elaphus), 267 Alpine chamois (Rupicapra r. rupicapra) and 264 Alpine ibex (Capra i. ibex) from all over Switzerland and analysed by PCR with pan-Babesia primers targeting the 18S rRNA gene, primers specific for B. capreoli and Babesia sp. EU1, and by sequencing. Babesia species, including B. divergens, B. capreoli, Babesia sp. EU1, Babesia sp. CH1 and B. motasi, were detected in 10.7% of all samples. Five individuals were co-infected with two Babesia species. Infection with specific Babesia varied widely between host species. Cervidae were significantly more infected with Babesia spp. than Caprinae. Babesia capreoli and Babesia sp. EU1 were mostly found in roe deer (prevalences 17.1% and 7.7%, respectively) and B. divergens and Babesia sp. CH1 only in red deer. Factors significantly associated with infection were low altitude and young age. Identification of Babesia sp. CH1 in red deer, co-infection with multiple Babesia species and infection of wild Caprinae with B. motasi and Babesia sp. EU1 are novel findings. We propose wild Caprinae as spillover or accidental hosts for Babesia species but wild Cervidae as mammalian reservoir hosts for B. capreoli, possibly Babesia sp. EU1 and Babesia sp. CH1, whereas their role regarding B. divergens is more elusive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salmonella enterica subspecies I serovars are common bacterial pathogens causing diseases ranging from enterocolitis to systemic infections. Some serovars are adapted to specific hosts, whereas others have a broad host range. The molecular mechanisms defining the virulence characteristics and the host range of a given S. enterica serovar are unknown. Streptomycin pretreated mice provide a surrogate host model for studying molecular aspects of the intestinal inflammation (colitis) caused by serovar Typhimurium (S. Hapfelmeier and W. D. Hardt, Trends Microbiol. 13:497-503, 2005). Here, we studied whether this animal model is also useful for studying other S. enterica subspecies I serovars. All three tested strains of the broad-host-range serovar Enteritidis (125109, 5496/98, and 832/99) caused pronounced colitis and systemic infection in streptomycin pretreated mice. Different levels of virulence were observed among three tested strains of the host-adapted serovar Dublin (SARB13, SD2229, and SD3246). Several strains of host restricted serovars were also studied. Two serovar Pullorum strains (X3543 and 449/87) caused intermediate levels of colitis. No intestinal inflammation was observed upon infection with three different serovar Paratyphi A strains (SARB42, 2804/96, and 5314/98) and one serovar Gallinarum strain (X3796). A second serovar Gallinarum strain (287/91) was highly virulent and caused severe colitis. This strain awaits future analysis. In conclusion, the streptomycin pretreated mouse model can provide an additional tool to study virulence factors (i.e., those involved in enteropathogenesis) of various S. enterica subspecies I serovars. Five of these strains (125109, 2229, 287/91, 449/87, and SARB42) are subject of Salmonella genome sequencing projects. The streptomycin pretreated mouse model may be useful for testing hypotheses derived from this genomic data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comparative genomics of virulent Tannerella forsythia ATCC 43037 and a close health-associated relative, Tannerella BU063, revealed, in the latter, the absence of an entire array of genes encoding putative secretory proteases that possess a nearly identical C-terminal domain (CTD) that ends with a -Lys-Leu-Ile-Lys-Lys motif. This observation suggests that these proteins, referred to as KLIKK proteases, may function as virulence factors. Re-sequencing of the loci of the KLIKK proteases found only six genes grouped in two clusters. All six genes were expressed by T. forsythia in routine culture conditions, although at different levels. More importantly, a transcript of each gene was detected in gingival crevicular fluid (GCF) from periodontitis sites infected with T. forsythia indicating that the proteases are expressed in vivo. In each protein, a protease domain was flanked by a unique N-terminal profragment and a C-terminal extension ending with the CTD. Partially purified recombinant proteases showed variable levels of proteolytic activity in zymography gels and toward protein substrates, including collagen, gelatin, elastin, and casein. Taken together, these results indicate that the pathogenic strain of T. forsythia secretes active proteases capable of degrading an array of host proteins, which likely represents an important pathogenic feature of this bacterium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UNLABELLED In a prospective multicentre study of bloodstream infection (BSI) from November 01, 2007 to July 31, 2010, seven paediatric cancer centres (PCC) from Germany and one from Switzerland included 770 paediatric cancer patients (58% males; median age 8.3 years, interquartile range (IQR) 3.8-14.8 years) comprising 153,193 individual days of surveillance (in- and outpatient days during intensive treatment). Broviac catheters were used in 63% of all patients and Ports in 20%. One hundred forty-two patients (18%; 95% CI 16 to 21%) experienced at least one BSI (179 BSIs in total; bacteraemia 70%, bacterial sepsis 27%, candidaemia 2%). In 57%, the BSI occurred in inpatients, in 79% after conventional chemotherapy. Only 56 % of the patients showed neutropenia at BSI onset. Eventually, patients with acute lymphoblastic leukaemia (ALL) or acute myeloblastic leukaemia (AML), relapsed malignancy and patients with a Broviac faced an increased risk of BSI in the multivariate analysis. Relapsed malignancy (16%) was an independent risk factor for all BSI and for Gram-positive BSI. CONCLUSION This study confirms relapsed malignancy as an independent risk factor for BSIs in paediatric cancer patients. On a unit level, data on BSIs in this high-risk population derived from prospective surveillance are not only mandatory to decide on empiric antimicrobial treatment but also beneficial in planning and evaluating preventive bundles. WHAT IS KNOWN • Paediatric cancer patients face an increased risk of nosocomial bloodstream infections (BSIs). • In most cases, these BSIs are associated with the use of a long-term central venous catheter (Broviac, Port), severe and prolonged immunosuppression (e.g. neutropenia) and other chemotherapy-induced alterations of host defence mechanisms (e.g. mucositis). What is New: • This study is the first multicentre study confirming relapsed malignancy as an independent risk factor for BSIs in paediatric cancer patients. • It describes the epidemiology of nosocomial BSI in paediatric cancer patients mainly outside the stem cell transplantation setting during conventional intensive therapy and argues for prospective surveillance programmes to target and evaluate preventive bundle interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Giardia duodenalis is considered the most common protozoan infecting humans worldwide. Molecular characterization of G. duodenalis isolates has revealed the existence of eight groups (assemblages A to H) which differ in their host distribution. A cross-sectional study was conducted in 639 children from La Habana between January and December 2013. Two assemblage-specific PCRs were carried out for the molecular characterization. The overall prevalence of Giardia infection was 11.9%. DNA from 63 of 76 (82.9%) samples was successfully amplified by PCR-tpi, while 58 from 76 (76.3%) were detected by PCRE1-HF. Similar results by both PCRs were obtained in 54 from 76 samples (71%). According to these analyses, assemblage B and mixed assemblages A + B account for most of the Giardia infections in the cohort of children tested. Our current study identified assemblage B as predominant genotype in children infected with Giardia. Univariate analysis indicated that omission of washing hands before eating and keeping dogs at home were significant risk factors for a Giardia infection. In the future, novel molecular tools for a better discrimination of assemblages at the subassemblages level are needed to verify possible correlations between Giardia genotypes and symptomatology of giardiasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intracellular parasite Theileria parva infects and transforms bovine T-cells, inducing their uncontrolled proliferation and spread in non-lymphoid as well as lymphoid tissues. This parasite-induced transformation is the predominant factor contributing to the pathogenesis of a lymphoproliferative disease, called East Coast fever. T. parva-transformed cells become independent of antigenic stimulation or exogenous growth factors. A dissection of the signalling pathways that are activated in T. parva-infected cells shows that the parasite bypasses signalling pathways that normally emanate from the T-cell antigen receptor to induce continuous proliferation. This review concentrates on the influence of the parasite on the state of activation of the mitogen-activated protein kinase (MAPK), NF-kappaB and phosphoinositide-3-kinase (PI3-K) pathways in the host cell. Of the MAPKs, JNK, but not ERK or p38, is active, inducing constitutive activation of the transcription factors AP-1 and ATF-2. A crucial step in the transformation process is the persistent activation of the transcription factor NF-kappaB, which protects T. parva-transformed cells from spontaneous apoptosis accompanying the transformation process. Inhibitor studies also suggest an important role for the lipid kinase, PI-3K, in the continuous proliferation of T. parva-transformed lymphocytes.