20 resultados para ANTIGEN PRESENTATION
Resumo:
Cytomegalovirus (CMV) reactivation in the retina of immunocompromized patients is a cause of significant morbidity as it can lead to blindness. The adaptive immune response is critical in controlling murine CMV (MCMV) infection in MCMV-susceptible mouse strains. CD8(+) T cells limit systemic viral replication in the acute phase of infection and are essential to contain latent virus. In this study, we provide the first evaluation of the kinetics of anti-viral T-cell responses after subretinal infection with MCMV. The acute response was characterized by a rapid expansion phase, with infiltration of CD8(+) T cells into the infected retina, followed by a contraction phase. MCMV-specific T cells displayed biphasic kinetics with a first peak at day 12 and contraction by day 18 followed by sustained recruitment of these cells into the retina at later time points post-infection. MCMV-specific CD8(+) T cells were also observed in the draining cervical lymph nodes and the spleen. Presentation of viral epitopes and activation of CD8(+) T cells was widespread and could be detected in the spleen and the draining lymph nodes, but not in the retina or iris. Moreover, after intraocular infection, antigen-specific cytotoxic activity was detectable and exhibited kinetics equivalent to those observed after intraperitoneal infection with the same viral dose. These data provide novel insights of how and where immune responses are initiated when viral antigen is present in the subretinal space.
Resumo:
Cathepsins are required for the processing of antigens in order to make them suitable for loading on major histocompatibility complex (MHC) class II molecules, for subsequent presentation to CD4(+) T cells. It was shown that antigen processing in monocyte-derived dendritic cells (DC), a commonly used DC model, is different from that of primary human DC. Here, we report that the two subsets of human myeloid DC (mDC) and plasmacytoid DC (pDC) differ in their cathepsin distribution. The serine protease cathepsin G (CatG) was detected in mDC1, mDC2, pDC, cortical thymic epithelial cells (cTEC) and high levels of CatG were determined in pDC. To address the role of CatG in the processing and presentation of a Multiple Sclerosis-associated autoantigen myelin basic protein (MBP), we used a non-CatG expressing fibroblast cell line and fibroblasts, which were preloaded with purified CatG. We find that preloading fibroblasts with CatG results in a decrease of MBP84-98-specific T cell proliferation, when compared to control cells. Our data suggest a different processing signature in primary human antigen-presenting cells and CatG may be of functional importance.
Resumo:
Cryptococcus spp. commonly causes infection in immunocompromised hosts. Clinical presentation of cryptococcal meningoencephalitis (CM) is variable, but headache, fever and a high intracranial pressure should suggest the diagnosis. The cryptococcal antigen test is a specific and sensitive rapid test that can be performed on blood or cerebrospinal fluid. We report a case of CM in a patient with previously undetected lymphocytopenia. Because cryptococcal antigen test results were negative, diagnosis and treatment were delayed.
Resumo:
Lymph node (LN) stromal cells (LNSCs) form the functional structure of LNs and play an important role in lymphocyte survival and the maintenance of immune tolerance. Despite their broad spectrum of function, little is known about LNSC responses during microbial infection. In this study, we demonstrate that LNSC subsets display distinct kinetics following vaccinia virus infection. In particular, compared with the expansion of other LNSC subsets and the total LN cell population, the expansion of fibroblastic reticular cells (FRCs) was delayed and sustained by noncirculating progenitor cells. Notably, newly generated FRCs were preferentially located in perivascular areas. Viral clearance in reactive LNs preceded the onset of FRC expansion, raising the possibility that viral infection in LNs may have a negative impact on the differentiation of FRCs. We also found that MHC class II expression was upregulated in all LNSC subsets until day 10 postinfection. Genetic ablation of radioresistant stromal cell-mediated Ag presentation resulted in slower contraction of Ag-specific CD4(+) T cells. We propose that activated LNSCs acquire enhanced Ag-presentation capacity, serving as an extrinsic brake system for CD4(+) T cell responses. Disrupted function and homeostasis of LNSCs may contribute to immune deregulation in the context of chronic viral infection, autoimmunity, and graft-versus-host disease.
Resumo:
The adenylate cyclase toxoid (ACT) of Bordetella pertussis is capable of delivering its N-terminal catalytic domain into the cytosol of CD11b-expressing professional antigen-presenting cells such as myeloid dendritic cells. This allows delivery of CD8+ T-cell epitopes to the major histocompatibility complex (MHC) class I presentation pathway. Recombinant detoxified ACT containing an epitope of the Plasmodium berghei circumsporozoite protein (CSP), indeed, induced a specific CD8+ T-cell response in immunized mice after a single application, as detected by MHC multimer staining and gamma interferon (IFN-gamma) ELISPOT assay. This CSP-specific response could be significantly enhanced by prime-boost immunization with recombinant ACT in combination with anti-CTLA-4 during the boost immunization. This increased response was accompanied by complete protection in a number of mice after a challenge with P. berghei sporozoites. Transient blockade of CTLA-4 may overcome negative regulation and hence provide a strategy to enhance the efficacy of a vaccine by amplifying the number of responding T cells.