55 resultados para ACTIVE FLOW CONTROL
Resumo:
The Long Term Evolution (LTE) cellular technology is expected to extend the capacity and improve the performance of current 3G cellular networks. Among the key mechanisms in LTE responsible for traffic management is the packet scheduler, which handles the allocation of resources to active flows in both the frequency and time dimension. This paper investigates for various scheduling scheme how they affect the inter-cell interference characteristics and how the interference in turn affects the user’s performance. A special focus in the analysis is on the impact of flow-level dynamics resulting from the random user behaviour. For this we use a hybrid analytical/simulation approach which enables fast evaluation of flow-level performance measures. Most interestingly, our findings show that the scheduling policy significantly affects the inter-cell interference pattern but that the scheduler specific pattern has little impact on the flow-level performance.
Resumo:
Long Term Evolution (LTE) is a cellular technology foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key mechanism in the LTE traffic handling is the packet scheduler, which is in charge of allocating resources to active flows in both the frequency and time dimension. In this paper we present a performance comparison of three distinct scheduling schemes for LTE uplink with main focus on the impact of flow-level dynamics resulting from the random user behaviour. We apply a combined analytical/simulation approach which enables fast evaluation of flow-level performance measures. The results show that by considering flow-level dynamics we are able to observe performance trends that would otherwise stay hidden if only packet-level analysis is performed.
Resumo:
Climbing is a popular sport in Switzerland, with approximately 100 000 active participants. There is an inherent risk of falls, overuse and stress-related trauma, with a reported injury rate of 4.2 injuries per 1000 climbing hours.
Resumo:
OBJECTIVE: Current pulsatile ventricular assist devices operate asynchronous with the left ventricle in fixed-rate or fill-to-empty modes because electrocardiogram-triggered modes have been abandoned. We hypothesize that varying the ejection delay in the synchronized mode yields more precise control of hemodynamics and left ventricular loading. This allows for a refined management that may be clinically beneficial. METHODS: Eight sheep received a Thoratec paracorporeal ventricular assist device (Thoratec Corp, Pleasanton, Calif) via ventriculo-aortic cannulation. Left ventricular pressure and volume, aortic pressure, pulmonary flow, pump chamber pressure, and pump inflow and outflow were recorded. The pump was driven by a clinical pneumatic drive unit (Medos Medizintechnik AG, Stolberg, Germany) synchronously with the native R-wave. The start of pump ejection was delayed between 0% and 100% of the cardiac period in 10% increments. For each of these delays, hemodynamic variables were compared with baseline data using paired t tests. RESULTS: The location of the minimum of stroke work was observed at a delay of 10% (soon after aortic valve opening), resulting in a median of 43% reduction in stroke work compared with baseline. Maximum stroke work occurred at a median delay of 70% with a median stroke work increase of 11% above baseline. Left ventricular volume unloading expressed by end-diastolic volume was most pronounced for copulsation (delay 0%). CONCLUSIONS: The timing of pump ejection in synchronized mode yields control over left ventricular energetics and can be a method to achieve gradual reloading of a recoverable left ventricle. The traditionally suggested counterpulsation is not optimal in ventriculo-aortic cannulation when maximum unloading is desired.
Resumo:
Low cardiac output impairs the hepatic arterial buffer response (HABR). Whether this is due to low abdominal blood flow per se is not known. Dobutamine is commonly used to increase cardiac output, and it may further modify hepatosplanchnic and renal vasoregulation. We assessed the effects of isolated abdominal aortic blood flow changes and dobutamine on hepatosplanchnic and renal blood flow. Twenty-five anesthetized pigs with an abdominal aorto-aortic shunt were randomized to 2 control groups [zero (n = 6) and minimal (n = 6) shunt flow], and 2 groups with 50% reduction of abdominal blood flow and either subsequent increased abdominal blood flow by shunt reduction (n = 6) or dobutamine infusion at 5 and 10 microg kg(-1) min(-1) with constant shunt flow (n = 7). Regional (ultrasound) and local (laser Doppler) intra-abdominal blood flows were measured. The HABR was assessed during acute portal vein occlusion. Sustained low abdominal blood flow, by means of shunt activation, decreased liver, gut, and kidney blood flow similarly and reduced local microcirculatory blood flow in the jejunum. Shunt flow reduction partially restored regional blood flows but not jejunal microcirculatory blood flow. Low-but not high-dose dobutamine increased gut and celiac trunk flow whereas hepatic artery and renal blood flows remained unchanged. Neither intervention altered local blood flows. The HABR was not abolished during sustained low abdominal blood flow despite substantially reduced hepatic arterial blood flow and was not modified by dobutamine. Low-but not high-dose dobutamine redistributes blood flow toward the gut and celiac trunk. The jejunal microcirculatory flow, once impaired, is difficult to restore.
Resumo:
Telomeres have emerged as crucial cellular elements in aging and various diseases including cancer. To measure the average length of telomere repeats in cells, we describe our protocols that use fluorescent in situ hybridization (FISH) with labeled peptide nucleic acid (PNA) probes specific for telomere repeats in combination with fluorescence measurements by flow cytometry (flow FISH). Flow FISH analysis can be performed using commercially available flow cytometers, and has the unique advantage over other methods for measuring telomere length of providing multi-parameter information on the length of telomere repeats in thousands of individual cells. The accuracy and reproducibility of the measurements is augmented by the automation of most pipetting (aspiration and dispensing) steps, and by including an internal standard (control cells) with a known telomere length in every tube. The basic protocol for the analysis of nucleated blood cells from 22 different individuals takes about 12 h spread over 2-3 days.
Resumo:
Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome in which the known susceptibility genes (DKC1, TERC, and TERT) belong to the telomere maintenance pathway; patients with DC have very short telomeres. We used multicolor flow fluorescence in situ hybridization analysis of median telomere length in total blood leukocytes, granulocytes, lymphocytes, and several lymphocyte subsets to confirm the diagnosis of DC, distinguish patients with DC from unaffected family members, identify clinically silent DC carriers, and discriminate between patients with DC and those with other bone marrow failure disorders. We defined "very short" telomeres as below the first percentile measured among 400 healthy control subjects over the entire age range. Diagnostic sensitivity and specificity of very short telomeres for DC were more than 90% for total lymphocytes, CD45RA+/CD20- naive T cells, and CD20+ B cells. Granulocyte and total leukocyte assays were not specific; CD45RA- memory T cells and CD57+ NK/NKT were not sensitive. We observed very short telomeres in a clinically normal family member who subsequently developed DC. We propose adding leukocyte subset flow fluorescence in situ hybridization telomere length measurement to the evaluation of patients and families suspected to have DC, because the correct diagnosis will substantially affect patient management.
Resumo:
BACKGROUND: Vasopressin increases arterial pressure in septic shock even when alpha-adrenergic agonists fail. The authors studied the effects of vasopressin on microcirculatory blood flow in the entire gastrointestinal tract in anesthetized pigs during early septic shock. METHODS: Thirty-two pigs were intravenously anesthetized, mechanically ventilated, and randomly assigned to one of four groups (n=8 in each; full factorial design). Group S (sepsis) and group SV (sepsis-vasopressin) were made septic by fecal peritonitis. Group C and group V were nonseptic control groups. After 300 min, group V and group SV received intravenous infusion of 0.06 U.kg.h vasopressin. In all groups, cardiac index and superior mesenteric artery flow were measured. Microcirculatory blood flow was recorded with laser Doppler flowmetry in both mucosa and muscularis of the stomach, jejunum, and colon. RESULTS: While vasopressin significantly increased arterial pressure in group SV (P<0.05), superior mesenteric artery flow decreased by 51+/-16% (P<0.05). Systemic and mesenteric oxygen delivery and consumption decreased and oxygen extraction increased in the SV group. Effects on the microcirculation were very heterogeneous; flow decreased in the stomach mucosa (by 23+/-10%; P<0.05), in the stomach muscularis (by 48+/-16%; P<0.05), and in the jejunal mucosa (by 27+/-9%; P<0.05), whereas no significant changes were seen in the colon. CONCLUSION: Vasopressin decreased regional flow in the superior mesenteric artery and microcirculatory blood flow in the upper gastrointestinal tract. This reduction in flow and a concomitant increase in the jejunal mucosa-to-arterial carbon dioxide gap suggest compromised mucosal blood flow in the upper gastrointestinal tract in septic pigs receiving low-dose vasopressin.
Resumo:
INTRODUCTION: It has been suggested that infants dynamically regulate their tidal flow and end-expiratory volume level. The interaction between muscle activity, flow and lung volume in spontaneously sleeping neonates is poorly studied, since it requires the assessment of transcutaneous electromyography of respiratory muscles (rEMG) in matched comparison to lung function measurements. METHODS: After determining feasibility and repeatability of rEMG in 20 spontaneously sleeping healthy neonates, we measured the relative impact of intercostal and diaphragmatic EMG activity in direct comparison to the resulting tidal flow and FRC. RESULTS: We found good feasibility, repeatability and correlation of timing indices between rEMG activity and flow. The rEMG amplitude was significantly dependent on the resistive load of the face mask. Diaphragm and intercostal muscle activity commenced prior to the onset of flow and remained active during the expiratory cycle. The relative contribution of intercostal and diaphragmatic activity to flow was variable and changed dynamically. CONCLUSION: Using matched rEMG, air flow and lung volume measurements, we have found good feasibility and repeatability of intercostal and diaphragm rEMG measurements and provide the first quantitative measures of the temporal relationship between muscle activity and flow in spontaneously sleeping healthy neonates. Lung mechanical function is dynamically regulated and adapts on a breath to breath basis. So, non-invasive rEMG measurements alone or in combination with lung function might provide a more comprehensive picture of pulmonary mechanics in future studies. The data describing the timing of EMG and flow may be important for future studies of EMG triggered mechanical ventilation.
Resumo:
BACKGROUND: Reperfusion injury is insufficiently addressed in current clinical management of acute limb ischemia. Controlled reperfusion carries an enormous clinical potential and was tested in a new reality-driven rodent model. METHODS AND RESULTS: Acute hind-limb ischemia was induced in Wistar rats and maintained for 4 hours. Unlike previous tourniquets models, femoral vessels were surgically prepared to facilitate controlled reperfusion and to prevent venous stasis. Rats were randomized into an experimental group (n=7), in which limbs were selectively perfused with a cooled isotone heparin solution at a limited flow rate before blood flow was restored, and a conventional group (n=7; uncontrolled blood reperfusion). Rats were killed 4 hours after blood reperfusion. Nonischemic limbs served as controls. Ischemia/reperfusion injury was significant in both groups; total wet-to-dry ratio was 159+/-44% of normal (P=0.016), whereas muscle viability and contraction force were reduced to 65+/-13% (P=0.016) and 45+/-34% (P=0.045), respectively. Controlled reperfusion, however, attenuated reperfusion injury significantly. Tissue edema was less pronounced (132+/-16% versus 185+/-42%; P=0.011) and muscle viability (74+/-11% versus 57+/-9%; P=0.004) and contraction force (68+/-40% versus 26+/-7%; P=0.045) were better preserved than after uncontrolled reperfusion. Moreover, subsequent blood circulation as assessed by laser Doppler recovered completely after controlled reperfusion but stayed durably impaired after uncontrolled reperfusion (P=0.027). CONCLUSIONS: Reperfusion injury was significantly alleviated by basic modifications of the initial reperfusion period in a new in vivo model of acute limb ischemia. With this model, systematic optimizations of according protocols may eventually translate into improved clinical management of acute limb ischemia.
Resumo:
BACKGROUND AND AIM OF THE STUDY: Combined replacement of the aortic valve and ascending aorta using a composite graft represents the standard treatment for dilated aortic root with concomitant structural damage of the aortic valve, especially when the aortic valve cannot be preserved. Unfortunately, hemodynamic changes associated with prosthetic replacement of the aortic root have not been fully elucidated. The study aim was to compare hemodynamics within the replaced aortic root using either a prosthetic vascular graft with bulges mimicking the sinuses of Valsalva and including a stented pericardial valve, or a straight xenopericardial conduit and a stentless porcine valve. METHODS: Between July 2004 and March 2006, a total of 35 patients (mean age 65.2 years: range: 32-80 years) was enrolled into the present study. Aortic root replacement was performed in nine patients with a Valsalva graft (Gelweave Valsalva; Vascutek, Renfrewshire, UK) including a stented pericardial valve, and in 19 patients with a xenopericardial conduit containing a stentless porcine valve. All patients underwent postoperative magnetic resonance imaging (MRI). A control group of seven patients allowed for comparison with native aortic root hemodynamics. RESULTS: Maximum flow-velocity above the aortic valve as one marker of compliance of the aortic root was slightly higher in patients with a Valsalva graft compared to native aortic roots (1.9 m/s versus 1.3 m/s, p = 0.001), but was significantly lower than in patients with the xenopericardial graft without neo-sinuses (1.3 m/s versus 2.4 m/s, p < 0.001). CONCLUSION: The pre-shaped bulges in the prosthetic Valsalva graft effectively mimic the native sinuses of Valsalva, improve compliance of the aortic root, and result in a more physiologic flow pattern, as demonstrated by postoperative MRI.
Resumo:
Introduction Reconstitution of peripheral blood (PB) B cells after therapeutic depletion with the chimeric anti-CD20 antibody rituximab (RTX) mimics lymphatic ontogeny. In this situation, the repletion kinetics and migratory properties of distinct developmental B-cell stages and their correlation to disease activity might facilitate our understanding of innate and adaptive B-cell functions in rheumatoid arthritis (RA). Methods Thirty-five 'RTX-naïve' RA patients with active arthritis were treated after failure of tumour necrosis factor blockade in an open-label study with two infusions of 1,000 mg RTX. Prednisone dose was tapered according to clinical improvement from a median of 10 mg at baseline to 5 mg at 9 and 12 months. Conventional disease-modifying antirheumatic drugs were kept stable. Subsets of CD19+ B cells were assessed by flow cytometry according to their IgD and CD27 surface expression. Their absolute number and relative frequency in PB were followed every 3 months and were determined in parallel in synovial tissue (n = 3) or synovial fluid (n = 3) in the case of florid arthritis. Results Six of 35 patients fulfilled the European League Against Rheumatism criteria for moderate clinical response, and 19 others for good clinical response. All PB B-cell fractions decreased significantly in number (P < 0.001) after the first infusion. Disease activity developed independently of the total B-cell number. B-cell repopulation was dominated in quantity by CD27-IgD+ 'naïve' B cells. The low number of CD27+IgD- class-switched memory B cells (MemB) in the blood, together with sustained reduction of rheumatoid factor serum concentrations, correlated with good clinical response. Class-switched MemB were found accumulated in flaring joints. Conclusions The present data support the hypothesis that control of adaptive immune processes involving germinal centre-derived, antigen, and T-cell-dependently matured B cells is essential for successful RTX treatment.
Resumo:
When we actively explore the visual environment, our gaze preferentially selects regions characterized by high contrast and high density of edges, suggesting that the guidance of eye movements during visual exploration is driven to a significant degree by perceptual characteristics of a scene. Converging findings suggest that the selection of the visual target for the upcoming saccade critically depends on a covert shift of spatial attention. However, it is unclear whether attention selects the location of the next fixation uniquely on the basis of global scene structure or additionally on local perceptual information. To investigate the role of spatial attention in scene processing, we examined eye fixation patterns of patients with spatial neglect during unconstrained exploration of natural images and compared these to healthy and brain-injured control participants. We computed luminance, colour, contrast, and edge information contained in image patches surrounding each fixation and evaluated whether they differed from randomly selected image patches. At the global level, neglect patients showed the characteristic ipsilesional shift of the distribution of their fixations. At the local level, patients with neglect and control participants fixated image regions in ipsilesional space that were closely similar with respect to their local feature content. In contrast, when directing their gaze to contralesional (impaired) space neglect patients fixated regions of significantly higher local luminance and lower edge content than controls. These results suggest that intact spatial attention is necessary for the active sampling of local feature content during scene perception.
Resumo:
A large body of research analyzes the runtime execution of a system to extract abstract behavioral views. Those approaches primarily analyze control flow by tracing method execution events or they analyze object graphs of heap snapshots. However, they do not capture how objects are passed through the system at runtime. We refer to the exchange of objects as the object flow, and we claim that object flow is necessary to analyze if we are to understand the runtime of an object-oriented application. We propose and detail Object Flow Analysis, a novel dynamic analysis technique that takes this new information into account. To evaluate its usefulness, we present a visual approach that allows a developer to study classes and components in terms of how they exchange objects at runtime. We illustrate our approach on three case studies.
Resumo:
Conventional debugging tools present developers with means to explore the run-time context in which an error has occurred. In many cases this is enough to help the developer discover the faulty source code and correct it. However, rather often errors occur due to code that has executed in the past, leaving certain objects in an inconsistent state. The actual run-time error only occurs when these inconsistent objects are used later in the program. So-called back-in-time debuggers help developers step back through earlier states of the program and explore execution contexts not available to conventional debuggers. Nevertheless, even back-in-time debuggers do not help answer the question, ``Where did this object come from?'' The Object-Flow Virtual Machine, which we have proposed in previous work, tracks the flow of objects to answer precisely such questions, but this VM does not provide dedicated debugging support to explore faulty programs. In this paper we present a novel debugger, called Compass, to navigate between conventional run-time stack-oriented control flow views and object flows. Compass enables a developer to effectively navigate from an object contributing to an error back-in-time through all the code that has touched the object. We present the design and implementation of Compass, and we demonstrate how flow-centric, back-in-time debugging can be used to effectively locate the source of hard-to-find bugs.