24 resultados para 6023 PLANETARY SCIENCES: COMETS AND SMALL BODIES Comets: dust tails and trails


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The usage of social media in leisure time settings has become a prominent research topic. However, less research has been done on the design of social media in collaboration settings. In this study, we investigate how social media can support asynchronous collaboration in virtual teams and specifically how they can increase activity awareness. On the basis of an open source social networking platform, we present two prototype designs: a standard platform with basic support for information processing, communication and process – as suggested by Zigurs and Buckland (1998) – and an advanced platform with additional support for activity awareness via specialfeed functions. We argue that the standard platform already conveys activity awareness to a certain extent, however, that this awareness can be increased even more by the feeds in the advanced platform. Both prototypes are tested in a field experiment and evaluated with respect to their impact on perceived activity awareness, coordination and satisfaction. We show that the advanced design increases coordination and satisfaction through increased perceived activity awareness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We measured the elemental composition on a sample of Allende meteorite with a miniature laser ablation mass spectrometer. This Laser Mass Spectrometer (LMS) has been designed and built at the University of Bern in the Department of Space Research and Planetary Sciences with the objective of using such an instrument on a space mission. Utilising the meteorite Allende as the test sample in this study, it is demonstrated that the instrument allows the in situ determination of the elemental composition and thus mineralogy and petrology of untreated rocky samples, particularly on planetary surfaces. In total, 138 measurements of elemental compositions have been carried out on an Allende sample. The mass spectrometric data are evaluated and correlated with an optical image. It is demonstrated that by illustrating the measured elements in the form of mineralogical maps, LMS can serve as an element imaging instrument with a very high spatial resolution of µm scale. The detailed analysis also includes a mineralogical evaluation and an investigation of the volatile element content of Allende. All findings are in good agreement with published data and underline the high sensitivity, accuracy and capability of LMS as a mass analyser for space exploration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characterization of exoplanetary atmospheres has come of age in the last decade, as astronomical techniques now allow for albedos, chemical abundances, temperature profiles and maps, rotation periods and even wind speeds to be measured. Atmospheric dynamics sets the background state of density, temperature and velocity that determines or influences the spectral and temporal appearance of an exoplanetary atmosphere. Hot exoplanets are most amenable to these characterization techniques; in the present review, we focus on highly-irradiated, large exoplanets (the "hot Jupiters"), as astronomical data begin to confront theoretical questions. We summarize the basic atmospheric quantities inferred from the astronomical observations. We review the state of the art by addressing a series of current questions and look towards the future by considering a separate set of exploratory questions. Attaining the next level of understanding will require a concerted effort of constructing multi-faceted, multi-wavelength datasets for benchmark objects. Understanding clouds presents a formidable obstacle, as they introduce degeneracies into the interpretation of spectra, yet their properties and existence are directly influenced by atmospheric dynamics. Confronting general circulation models with these multi-faceted, multi-wavelength datasets will help us understand these and other degeneracies. The coming decade will witness a decisive confrontation of theory and simulation by the next generation of astronomical data.