18 resultados para 4-nitroanthranilic acid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: G protein-coupled receptor agonists are being used as radiolabeled vectors for in vivo localization and therapy of tumors. Recently, somatostatin-based antagonists were shown to be superior to agonists. Here, we compare the new [111In/68Ga]-labeled bombesin-based antagonist RM1 with the agonist [111In]-AMBA for targeting the gastrin-releasing peptide receptor (GRPR). EXPERIMENTAL DESIGN: IC50, Kd values, and antagonist potency were determined using PC-3 and HEK-GRPR cells. Biodistribution and imaging studies were done in nude mice transplanted with the PC-3 tumor. The antagonist potency was assessed by evaluating the effects on calcium release and on receptor internalization monitored by immunofluorescence microscopy. RESULTS: The IC50 value of [(nat)In]-RM1 was 14 +/- 3.4 nmol/L. [(nat/111)In]-RM1 was found to bind to the GRPR with a Kd of 8.5 +/- 2.7 nmol/L compared with a Kd of 0.6 +/- 0.3 nmol/L of [111In]-AMBA. A higher maximum number of binding site value was observed for [111In]-RM1 (2.4 +/- 0.2 nmol/L) compared with [111In]-AMBA (0.7 +/- 0.1 nmol/L). [(nat)Lu]-AMBA is a potent agonist in the immunofluorescence-based internalization assay, whereas [(nat)In]-RM1 is inactive alone but efficiently antagonizes the bombesin effect. These data are confirmed by the calcium release assay. The pharmacokinetics showed a superiority of the radioantagonist with regard to the high tumor uptake (13.4 +/- 0.8% IA/g versus 3.69 +/- 0.75% IA/g at 4 hours after injection. as well as to all tumor-to-normal tissue ratios. CONCLUSION: Despite their relatively low GRPR affinity, the antagonists [111In/68Ga]-RM1 showed superior targeting properties compared with [111In]-AMBA. As found for somatostatin receptor-targeting radiopeptides, GRP-based radioantagonists seem to be superior to radioagonists for in vivo imaging and potentially also for targeted radiotherapy of GRPR-positive tumors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fifty members of a novel class of antimicrobial compounds, 2-(4-R-phenoxymethyl)benzoic acid thioureides, were synthesized and characterized with respect to their activities against three parasites of human relevance, namely the protozoa Giardia lamblia and Toxoplasma gondii, and the larval (metacestode) stage of the tapeworm Echinococcus multilocularis. To determine the selective toxicity of these compounds, the human colon cancer cell line Caco2 and primary cultures of human foreskin fibroblasts (HFF) were also investigated. The new thioureides were obtained in a three-step-reaction process and subsequently characterized by their physical constants (melting point, solubility). The chemical structures were elucidated by (1)H NMR, (13)C NMR, IR spectral methods and elemental analysis. The analyses confirmed the final and intermediate compound structures and the synthesis. The compounds were then tested on the parasites in vitro. All thioureides, except two compounds with a nitro group, were totally ineffective against Giardia lamblia. 23 compounds inhibited the proliferation of T. gondii, three of them with an IC(50) of approximately 1 microM. The structural integrity of E. multilocularis metacestodes was affected by 22 compounds. In contrast, HFF were not susceptible to any of these thioureides, while Caco2 cells were affected by 17 compounds, two of them inhibiting proliferation with an IC(50) in the micromolar range. Thioureides may thus present a promising class of anti-infective agents.